35 research outputs found

    Evaluating Word Embeddings in Multi-label Classification Using Fine-grained Name Typing

    Full text link
    Embedding models typically associate each word with a single real-valued vector, representing its different properties. Evaluation methods, therefore, need to analyze the accuracy and completeness of these properties in embeddings. This requires fine-grained analysis of embedding subspaces. Multi-label classification is an appropriate way to do so. We propose a new evaluation method for word embeddings based on multi-label classification given a word embedding. The task we use is fine-grained name typing: given a large corpus, find all types that a name can refer to based on the name embedding. Given the scale of entities in knowledge bases, we can build datasets for this task that are complementary to the current embedding evaluation datasets in: they are very large, contain fine-grained classes, and allow the direct evaluation of embeddings without confounding factors like sentence contextComment: 6 pages, The 3rd Workshop on Representation Learning for NLP (RepL4NLP @ ACL2018

    Multi-Multi-View Learning: Multilingual and Multi-Representation Entity Typing

    Get PDF
    Knowledge bases (KBs) are paramount in NLP. We employ multiview learning for increasing accuracy and coverage of entity type information in KBs. We rely on two metaviews: language and representation. For language, we consider high-resource and lowresource languages from Wikipedia. For representation, we consider representations based on the context distribution of the entity (i.e., on its embedding), on the entity’s name (i.e., on its surface form) and on its description in Wikipedia. The two metaviews language and representation can be freely combined: each pair of language and representation (e.g., German embedding, English description, Spanish name) is a distinct view. Our experiments on entity typing with fine-grained classes demonstrate the effectiveness of multiview learning. We release MVET, a large multiview – and, in particular, multilingual – entity typing dataset we created. Mono- and multilingual finegrained entity typing systems can be evaluated on this dataset

    New Embedded Representations and Evaluation Protocols for Inferring Transitive Relations

    Full text link
    Beyond word embeddings, continuous representations of knowledge graph (KG) components, such as entities, types and relations, are widely used for entity mention disambiguation, relation inference and deep question answering. Great strides have been made in modeling general, asymmetric or antisymmetric KG relations using Gaussian, holographic, and complex embeddings. None of these directly enforce transitivity inherent in the is-instance-of and is-subtype-of relations. A recent proposal, called order embedding (OE), demands that the vector representing a subtype elementwise dominates the vector representing a supertype. However, the manner in which such constraints are asserted and evaluated have some limitations. In this short research note, we make three contributions specific to representing and inferring transitive relations. First, we propose and justify a significant improvement to the OE loss objective. Second, we propose a new representation of types as hyper-rectangular regions, that generalize and improve on OE. Third, we show that some current protocols to evaluate transitive relation inference can be misleading, and offer a sound alternative. Rather than use black-box deep learning modules off-the-shelf, we develop our training networks using elementary geometric considerations.Comment: Accepted at SIGIR 201

    Probing for Semantic Classes: Diagnosing the Meaning Content of Word Embeddings

    Get PDF
    Word embeddings typically represent differ- ent meanings of a word in a single conflated vector. Empirical analysis of embeddings of ambiguous words is currently limited by the small size of manually annotated resources and by the fact that word senses are treated as unrelated individual concepts. We present a large dataset based on manual Wikipedia an- notations and word senses, where word senses from different words are related by semantic classes. This is the basis for novel diagnos- tic tests for an embedding’s content: we probe word embeddings for semantic classes and an- alyze the embedding space by classifying em- beddings into semantic classes. Our main find- ings are: (i) Information about a sense is gen- erally represented well in a single-vector em- bedding – if the sense is frequent. (ii) A clas- sifier can accurately predict whether a word is single-sense or multi-sense, based only on its embedding. (iii) Although rare senses are not well represented in single-vector embed- dings, this does not have negative impact on an NLP application whose performance depends on frequent senses
    corecore