79,106 research outputs found
Non-minimality of corners in subriemannian geometry
We give a short solution to one of the main open problems in subriemannian
geometry. Namely, we prove that length minimizers do not have corner-type
singularities. With this result we solve Problem II of Agrachev's list, and
provide the first general result toward the 30-year-old open problem of
regularity of subriemannian geodesics.Comment: 11 pages, final versio
Weighted analytic regularity in polyhedra
International audienceWe explain a simple strategy to establish analytic regularity for solutions of second order linear elliptic boundary value problems. The abstract framework presented here helps to understand the proof of analytic regularity in polyhedral domains given in "http://hal.archives-ouvertes.fr/hal-00454133" the authors' paper published in Math. Models Methods Appl. Sci. 22 (8) (2012). We illustrate this strategy by considering problems set in smooth domains, in corner domains and in polyhedra
Corner and finger formation in Hele--Shaw flow with kinetic undercooling regularisation
We examine the effect of a kinetic undercooling condition on the evolution of
a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We
present analytical and numerical evidence that the bubble boundary is unstable
and may develop one or more corners in finite time, for both expansion and
contraction cases. This loss of regularity is interesting because it occurs
regardless of whether the less viscous fluid is displacing the more viscous
fluid, or vice versa. We show that small contracting bubbles are described to
leading order by a well-studied geometric flow rule. Exact solutions to this
asymptotic problem continue past the corner formation until the bubble
contracts to a point as a slit in the limit. Lastly, we consider the evolving
boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The
boundary may either form corners in finite time, or evolve to a single long
finger travelling at constant speed, depending on the strength of kinetic
undercooling. We demonstrate these two different behaviours numerically. For
the travelling finger, we present results of a numerical solution method
similar to that used to demonstrate the selection of discrete fingers by
surface tension. With kinetic undercooling, a continuum of corner-free
travelling fingers exists for any finger width above a critical value, which
goes to zero as the kinetic undercooling vanishes. We have not been able to
compute the discrete family of analytic solutions, predicted by previous
asymptotic analysis, because the numerical scheme cannot distinguish between
solutions characterised by analytic fingers and those which are corner-free but
non-analytic
Energy-corrected FEM and explicit time-stepping for parabolic problems
The presence of corners in the computational domain, in general, reduces the
regularity of solutions of parabolic problems and diminishes the convergence
properties of the finite element approximation introducing a so-called
"pollution effect". Standard remedies based on mesh refinement around the
singular corner result in very restrictive stability requirements on the
time-step size when explicit time integration is applied. In this article, we
introduce and analyse the energy-corrected finite element method for parabolic
problems, which works on quasi-uniform meshes, and, based on it, create fast
explicit time discretisation. We illustrate these results with extensive
numerical investigations not only confirming the theoretical results but also
showing the flexibility of the method, which can be applied in the presence of
multiple singular corners and a three-dimensional setting. We also propose a
fast explicit time-stepping scheme based on a piecewise cubic energy-corrected
discretisation in space completed with mass-lumping techniques and numerically
verify its efficiency
Shape identification in inverse medium scattering problems with a single far-field pattern
Consider time-harmonic acoustic scattering from a bounded penetrable obstacle
embedded in a homogeneous background medium. The index
of refraction characterizing the material inside is supposed to be H\"older
continuous near the corners. If is a convex polygon, we
prove that its shape and location can be uniquely determined by the far-field
pattern incited by a single incident wave at a fixed frequency. In dimensions
, the uniqueness applies to penetrable scatterers of rectangular type
with additional assumptions on the smoothness of the contrast. Our arguments
are motivated by recent studies on the absence of non-scattering wavenumbers in
domains with corners. As a byproduct, we show that the smoothness conditions in
previous corner scattering results are only required near the corners
On Regularity of Abnormal Subriemannian Geodesics
We prove the smoothness of abnormal minimizers of subriemannian manifolds of
step 3 with a nilpotent basis. We prove that rank 2 Carnot groups of step 4
admit no strictly abnormal minimizers. For any subriemannian manifolds of step
less than 7, we show all abnormal minimizers have no corner type singularities,
which partly generalize the main result of Leonardi-Monti.Comment: This paper has been withdrawn by the author due to a crucial
computation error in (F_t^1)_sta
Weighted Sobolev spaces and regularity for polyhedral domains
We prove a regularity result for the Poisson problem , u
|\_{\pa \PP} = g on a polyhedral domain \PP \subset \RR^3 using the \BK\
spaces \Kond{m}{a}(\PP). These are weighted Sobolev spaces in which the
weight is given by the distance to the set of edges \cite{Babu70,
Kondratiev67}. In particular, we show that there is no loss of
\Kond{m}{a}--regularity for solutions of strongly elliptic systems with
smooth coefficients. We also establish a "trace theorem" for the restriction to
the boundary of the functions in \Kond{m}{a}(\PP)
- …
