1,427,566 research outputs found
Radiation of Neutron Stars Produced by Superfluid Core
We find that neutron star interior is transparent for collisionless electron
sound, the same way as it is transparent for neutrinos. In the presence of
magnetic field the electron sound is coupled with electromagnetic radiation and
form the fast magnetosonic wave. We find that electron sound is generated by
superfluid vortices in the stellar core. Thermally excited helical vortex waves
produce fast magnetosonic waves in the stellar crust which propagate toward the
surface and transform into outgoing electromagnetic radiation. The vortex
radiation has the spectral index -0.45 and can explain nonthermal radiation of
middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The
radiation is produced in the stellar interior which allows direct determination
of the core temperature. Comparing the theory with available spectra
observations we find that the core temperature of the Vela pulsar is T=8*10^8K,
while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is
the first measurement of the temperature of a neutron star core. The
temperature estimate rules out equation of states incorporating Bose
condensations of pions or kaons and quark matter in these objects. Based on the
temperature estimate and cooling models we determine the critical temperature
of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which
agrees well with recent data on behavior of nucleon interactions at high
energies. Another finding is that in the middle aged neutron stars the vortex
radiation, rather then thermal conductivity, is the main mechanism of heat
transfer from the stellar core to the surface. Electron sound opens a
perspective of direct spectroscopic study of superdense matter in the neutron
star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa
Physiological Studies of Heat Stress Acclimation During a Specific Exercise Regimen
Eleven subjects were used to determine if the exercise regimen of racquetball could be used as a heat stress acclimator. Core temperature, skin temperature, sweat production, and weight loss were recorded during a racquetball match. Skin and core temperatures were determined by using thermistors. Sweat was collected with modified stress electrodes. Weight loss was recorded by comparing nude weights at the beginning and end of a match. The results indicated that an hour of strenuous racquetball play caused a significant increase in core temperature with subsequent sweating which resulted in a significant decrease in skin temperature and weight loss. The exercise regimen of racquetball can act as a good heat stress acclimator because it produces sufficiently high levels of hyperthermia
Observing the gas temperature drop in the high-density nucleus of L 1544
Abridged: The thermal structure of a starless core is crucial for our
understanding of the physics in these objects and hence for our understanding
of star formation. Theory predicts a gas temperature drop in the inner 5000 AU
of these objects, but there has been little observational proof of this. We
performed VLA observations of the NH3 (1,1) and (2,2) transitions towards the
pre-stellar core L 1544 in order to measure the temperature gradient between
the high density core nucleus and the surrounding core envelope. Our VLA
observation for the first time provide measurements of gas temperature in a
core with a resolution smaller than 1000 AU. We have also obtained high
resolution Plateau de Bure observations of the 110 GHz 111-101 para-NH2D line
in order to further constrain the physical parameters of the high density
nucleus. We have estimated the temperature gradient using a model of the source
to fit our data in the u,v plane. We find that indeed the temperature decreases
toward the core nucleus from 12 K down to 5.5 K resulting in an increase of a
factor of 50% in the estimated density of the core from the dust continuum if
compared with the estimates done with constant temperature of 8.75 K. We also
found a remarkably high abundance of deuterated ammonia with respect to the
ammonia abundance (50%+-20%), which proves the persistence of nitrogen bearing
molecules at very high densities (2e6 cm-3) and shows that high-resolution
observations yield higher deuteration values than single-dish observations. Our
analysis of the NH3 and NH2D kinematic fields shows a decrease of specific
angular momentum from the large scales to the small scales.Comment: 12 pages, 6 figures. Accepted for publication by A&
The axial ratio of hcp iron at the conditions of the Earth's inner core
We present ab initio calculations of the high-temperature axial c/a ratio of
hexagonal-close-packed (hcp) iron at Earth's core pressures, in order to help
interpret the observed seismic anisotropy of the inner core. The calculations
are based on density functional theory, which is known to predict the
properties of high-pressure iron with good accuracy. The temperature dependence
of c/a is determined by minimising the Helmholtz free energy at fixed volume
and temperature, with thermal contributions due to lattice vibrations
calculated using harmonic theory. Anharmonic corrections to the harmonic
predictions are estimated from calculations of the thermal average stress
obtained from ab initio molecular dynamics simulations of hcp iron at the
conditions of the inner core. We find a very gradual increase of axial ratio
with temperature. This increase is much smaller than found in earlier
calculations, but is in reasonable agreement with recent high-pressure,
high-temperature diffraction measurements. This result casts doubt on an
earlier interpretation of the seismic anisotropy of the inner core
Site-selective nuclear magnetic relaxation time in a superconducting vortex state
The temperature and field dependences of the site-selective nuclear spin
relaxation time T_1 around vortices are studied comparatively both for s-wave
and d-wave superconductors, based on the microscopic Bogoliubov-de Gennes
theory. Reflecting low energy electronic excitations associated with the vortex
core, the site selective temperature dependences deviate from those of the
zero-field case, and T_1 becomes faster with approaching the vortex core. In
the core region, T_1^{-1} has a new peak below the superconducting transition
temperature T_c. The field dependence of the overall T_1(T) behaviors for
s-wave and d-wave superconductors is investigated and analyzed in terms of the
local density of states. The NMR study by the resonance field dependence may be
a new method to probe the spatial resolved vortex core structure in various
conventional and unconventional superconductors.Comment: 14Pages, 26 figures, revte
The Thermal Structure of Gas in Pre-Stellar Cores: A Case Study of Barnard 68
We present a direct comparison of a chemical/physical model to
multitransitional observations of C18O and 13CO towards the Barnard 68
pre-stellar core. These observations provide a sensitive test for models of low
UV field photodissociation regions and offer the best constraint on the gas
temperature of a pre-stellar core. We find that the gas temperature of this
object is surprisingly low (~7-8 K), and significantly below the dust
temperature, in the outer layers (Av < 5 mag) that are traced by C18O and 13CO
emission. As shown previously, the inner layers (Av > 5 mag) exhibit
significant freeze-out of CO onto grain surfaces. Because the dust and gas are
not fully coupled, depletion of key coolants in the densest layers raises the
core (gas) temperature, but only by ~1 K. The gas temperature in layers not
traced by C18O and 13CO emission can be probed by NH3 emission, with a
previously estimated temperature of ~10-11 K. To reach these temperatures in
the inner core requires an order of magnitude reduction in the gas to dust
coupling rate. This potentially argues for a lack of small grains in the
densest gas, presumably due to grain coagulation.Comment: 33 pages, 11 figures, accepted by Astrophysical Journa
Deformation of a Trapped Fermi Gas with Unequal Spin Populations
The real-space densities of a polarized strongly-interacting two-component
Fermi gas of Li atoms reveal two low temperature regimes, both with a
fully-paired core. At the lowest temperatures, the unpolarized core deforms
with increasing polarization. Sharp boundaries between the core and the excess
unpaired atoms are consistent with a phase separation driven by a first-order
phase transition. In contrast, at higher temperatures the core does not deform
but remains unpolarized up to a critical polarization. The boundaries are not
sharp in this case, indicating a partially-polarized shell between the core and
the unpaired atoms. The temperature dependence is consistent with a tricritical
point in the phase diagram.Comment: Accepted for publication in Physical Review Letter
- …
