1,427,566 research outputs found

    Radiation of Neutron Stars Produced by Superfluid Core

    Get PDF
    We find that neutron star interior is transparent for collisionless electron sound, the same way as it is transparent for neutrinos. In the presence of magnetic field the electron sound is coupled with electromagnetic radiation and form the fast magnetosonic wave. We find that electron sound is generated by superfluid vortices in the stellar core. Thermally excited helical vortex waves produce fast magnetosonic waves in the stellar crust which propagate toward the surface and transform into outgoing electromagnetic radiation. The vortex radiation has the spectral index -0.45 and can explain nonthermal radiation of middle-aged pulsars observed in the infrared, optical and hard X-ray bands. The radiation is produced in the stellar interior which allows direct determination of the core temperature. Comparing the theory with available spectra observations we find that the core temperature of the Vela pulsar is T=8*10^8K, while the core temperature of PSR B0656+14 and Geminga exceeds 2*10^8K. This is the first measurement of the temperature of a neutron star core. The temperature estimate rules out equation of states incorporating Bose condensations of pions or kaons and quark matter in these objects. Based on the temperature estimate and cooling models we determine the critical temperature of triplet neutron superfluidity in the Vela core Tc=(7.5\pm 1.5)*10^9K which agrees well with recent data on behavior of nucleon interactions at high energies. Another finding is that in the middle aged neutron stars the vortex radiation, rather then thermal conductivity, is the main mechanism of heat transfer from the stellar core to the surface. Electron sound opens a perspective of direct spectroscopic study of superdense matter in the neutron star interiors.Comment: 43 pages, 7 figures, to appear in Astrophysical Journa

    Physiological Studies of Heat Stress Acclimation During a Specific Exercise Regimen

    Get PDF
    Eleven subjects were used to determine if the exercise regimen of racquetball could be used as a heat stress acclimator. Core temperature, skin temperature, sweat production, and weight loss were recorded during a racquetball match. Skin and core temperatures were determined by using thermistors. Sweat was collected with modified stress electrodes. Weight loss was recorded by comparing nude weights at the beginning and end of a match. The results indicated that an hour of strenuous racquetball play caused a significant increase in core temperature with subsequent sweating which resulted in a significant decrease in skin temperature and weight loss. The exercise regimen of racquetball can act as a good heat stress acclimator because it produces sufficiently high levels of hyperthermia

    Observing the gas temperature drop in the high-density nucleus of L 1544

    Full text link
    Abridged: The thermal structure of a starless core is crucial for our understanding of the physics in these objects and hence for our understanding of star formation. Theory predicts a gas temperature drop in the inner 5000 AU of these objects, but there has been little observational proof of this. We performed VLA observations of the NH3 (1,1) and (2,2) transitions towards the pre-stellar core L 1544 in order to measure the temperature gradient between the high density core nucleus and the surrounding core envelope. Our VLA observation for the first time provide measurements of gas temperature in a core with a resolution smaller than 1000 AU. We have also obtained high resolution Plateau de Bure observations of the 110 GHz 111-101 para-NH2D line in order to further constrain the physical parameters of the high density nucleus. We have estimated the temperature gradient using a model of the source to fit our data in the u,v plane. We find that indeed the temperature decreases toward the core nucleus from 12 K down to 5.5 K resulting in an increase of a factor of 50% in the estimated density of the core from the dust continuum if compared with the estimates done with constant temperature of 8.75 K. We also found a remarkably high abundance of deuterated ammonia with respect to the ammonia abundance (50%+-20%), which proves the persistence of nitrogen bearing molecules at very high densities (2e6 cm-3) and shows that high-resolution observations yield higher deuteration values than single-dish observations. Our analysis of the NH3 and NH2D kinematic fields shows a decrease of specific angular momentum from the large scales to the small scales.Comment: 12 pages, 6 figures. Accepted for publication by A&

    The axial ratio of hcp iron at the conditions of the Earth's inner core

    Full text link
    We present ab initio calculations of the high-temperature axial c/a ratio of hexagonal-close-packed (hcp) iron at Earth's core pressures, in order to help interpret the observed seismic anisotropy of the inner core. The calculations are based on density functional theory, which is known to predict the properties of high-pressure iron with good accuracy. The temperature dependence of c/a is determined by minimising the Helmholtz free energy at fixed volume and temperature, with thermal contributions due to lattice vibrations calculated using harmonic theory. Anharmonic corrections to the harmonic predictions are estimated from calculations of the thermal average stress obtained from ab initio molecular dynamics simulations of hcp iron at the conditions of the inner core. We find a very gradual increase of axial ratio with temperature. This increase is much smaller than found in earlier calculations, but is in reasonable agreement with recent high-pressure, high-temperature diffraction measurements. This result casts doubt on an earlier interpretation of the seismic anisotropy of the inner core

    Site-selective nuclear magnetic relaxation time in a superconducting vortex state

    Full text link
    The temperature and field dependences of the site-selective nuclear spin relaxation time T_1 around vortices are studied comparatively both for s-wave and d-wave superconductors, based on the microscopic Bogoliubov-de Gennes theory. Reflecting low energy electronic excitations associated with the vortex core, the site selective temperature dependences deviate from those of the zero-field case, and T_1 becomes faster with approaching the vortex core. In the core region, T_1^{-1} has a new peak below the superconducting transition temperature T_c. The field dependence of the overall T_1(T) behaviors for s-wave and d-wave superconductors is investigated and analyzed in terms of the local density of states. The NMR study by the resonance field dependence may be a new method to probe the spatial resolved vortex core structure in various conventional and unconventional superconductors.Comment: 14Pages, 26 figures, revte

    The Thermal Structure of Gas in Pre-Stellar Cores: A Case Study of Barnard 68

    Full text link
    We present a direct comparison of a chemical/physical model to multitransitional observations of C18O and 13CO towards the Barnard 68 pre-stellar core. These observations provide a sensitive test for models of low UV field photodissociation regions and offer the best constraint on the gas temperature of a pre-stellar core. We find that the gas temperature of this object is surprisingly low (~7-8 K), and significantly below the dust temperature, in the outer layers (Av < 5 mag) that are traced by C18O and 13CO emission. As shown previously, the inner layers (Av > 5 mag) exhibit significant freeze-out of CO onto grain surfaces. Because the dust and gas are not fully coupled, depletion of key coolants in the densest layers raises the core (gas) temperature, but only by ~1 K. The gas temperature in layers not traced by C18O and 13CO emission can be probed by NH3 emission, with a previously estimated temperature of ~10-11 K. To reach these temperatures in the inner core requires an order of magnitude reduction in the gas to dust coupling rate. This potentially argues for a lack of small grains in the densest gas, presumably due to grain coagulation.Comment: 33 pages, 11 figures, accepted by Astrophysical Journa

    Deformation of a Trapped Fermi Gas with Unequal Spin Populations

    Full text link
    The real-space densities of a polarized strongly-interacting two-component Fermi gas of 6^6Li atoms reveal two low temperature regimes, both with a fully-paired core. At the lowest temperatures, the unpolarized core deforms with increasing polarization. Sharp boundaries between the core and the excess unpaired atoms are consistent with a phase separation driven by a first-order phase transition. In contrast, at higher temperatures the core does not deform but remains unpolarized up to a critical polarization. The boundaries are not sharp in this case, indicating a partially-polarized shell between the core and the unpaired atoms. The temperature dependence is consistent with a tricritical point in the phase diagram.Comment: Accepted for publication in Physical Review Letter
    corecore