1,765 research outputs found
Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the \u3cem\u3eActa1\u3c/em\u3e H40Y Murine Model of Nemaline Myopathy
Size Dependence in Non-sperm Ejaculate Production is Reflected in Daily Energy Expenditure and Resting Metabolic Rate
The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5–18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species
Development and life cycle of Neodolichodorus rostrulatus (Siddiqi, 1976), with observations on the copulatory plug (Nematoda : Tylenchina)
By hook or by crook? Morphometry, competition and cooperation in rodent sperm
Background
Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm.
Methodology/Principal Findings
Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse.
Conclusions
Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function
Psychological and physiological adaptations to sperm competition in humans
Postcopulatory competition between males, in the form of sperm competition, is a widespread phenomenon in many animal species. The extent to which sperm competition has been an important selective pressure during human evolution remains controversial, however. The authors review critically the evidence that human males and females have psychological, behavioral, and physiological adaptations that evolved in response to selection pressures associated with sperm competition. The authors consider, using evidence from contemporary societies, whether sperm competition is likely to have been a significant adaptive problem for ancestral humans and examine the evidence suggesting that human males have physiological and psychological mechanisms that allow for “prudent” sperm allocation in response to variations in the risk of sperm competition
Mating plugs in polyandrous giants: Which sex produces them, when, how and why?
10.1371/journal.pone.0040939PLoS ONE77
Sperm competition risk drives plasticity in seminal fluid composition
Background Ejaculates contain a diverse mixture of sperm and seminal fluid proteins, the combination of which is crucial to male reproductive success under competitive conditions. Males should therefore tailor the production of different ejaculate components according to their social environment, with particular sensitivity to cues of sperm competition risk (i.e. how likely it is that females will mate promiscuously). Here we test this hypothesis using an established vertebrate model system, the house mouse (Mus musculus domesticus), combining experimental data with a quantitative proteomics analysis of seminal fluid composition. Our study tests for the first time how both sperm and seminal fluid components of the ejaculate are tailored to the social environment. Results Our quantitative proteomics analysis reveals that the relative production of different proteins found in seminal fluid – i.e. seminal fluid proteome composition – differs significantly according to cues of sperm competition risk. Using a conservative analytical approach to identify differential expression of individual seminal fluid components, at least seven of 31 secreted seminal fluid proteins examined showed consistent differences in relative abundance under high versus low sperm competition conditions. Notably three important proteins with potential roles in sperm competition – SVS 6, SVS 5 and CEACAM 10 – were more abundant in the high competition treatment groups. Total investment in both sperm and seminal fluid production also increased with cues of heightened sperm competition risk in the social environment. By contrast, relative investment in different ejaculate components was unaffected by cues of mating opportunities. Conclusions Our study reveals significant plasticity in different ejaculate components, with the production of both sperm and non-sperm fractions of the ejaculate strongly influenced by the social environment. Sperm competition risk is thus shown to be a key factor in male ejaculate production decisions, including driving plasticity in seminal fluid composition
Kin-preferential cooperation, dominance-dependent reproductive skew, and competition for mates in communally nesting female house mice
Little is known about the behavioural mechanisms facilitating kin-preferential communal breeding in wild house mice (Mus domesticus). We evaluated the effect of kinship and male availability on aggression, social structure and reproductive skew in groups of female mice freely interacting and reproducing in semi-natural indoor enclosures. Triplets of either sisters or non-sisters were established in enclosures provided with either one or three littermate males, which were unrelated and unfamiliar to the females. Sisters were more spatially associated and less aggressive than non-sisters, leading to higher incidences of communal breeding and reproduction. This is in agreement with theoretical considerations on kin selection in house mice. Reproductive success was highly skewed in favour of dominant females due to subordinate infertility or complete loss of first litters, which might have been caused by dominant females. In spite of this, subordinates only rarely dispersed from the enclosures, suggesting that perceived dispersal risk generally outweighed relatively reduced reproductive potentials. Aggression levels among females were significantly higher when one male was available, compared to when three males were available. We suggest that this might result from higher female-female competition for mates, due to the risk of missing fertilisation when synchronously oestrous females encounter limited numbers of males in a deme. Our results indicate that, first, communal nursing in house mice might have evolved to ‘make the best out of a bad job' rather than to enhance offspring fitness; and, second, that female-female mate-competition might play an important role in shaping female social structure in this polygynous mamma
<i>Psammonema</i> gen. n. and <i>Pseudochromadora</i> Daday, 1889 (Nematoda, Desmodoridae) from sandy sediments of Gazi, Kenya
Three new species (Psammonema ovisetosum gen. et sp. n., Pseudochromadora coomansi sp. n.and Pseudochromadora buccobulbosa sp. n.; including all juvenile stages) belonging to a known and to a new genus of the family Desmodoridae (Nematoda, Desmodoroidea) were found in sandy sediments of the intertidal zone in front of the estuarine mangroves of Gazi, Kenya. Psammonema gen. n. differs from Pseudochromadora Daday, 1889 in shape and number of somatic setae in pharyngeal region, in position and shape of lateral alae, and in the anterior position of the amphids on the head capsule. Comments are given on the ecto-symbiotic organisms, feeding habits of the species and on the ontogenetic transformations of some morphological characters
- …
