2 research outputs found

    Robust LPV Control for Attitude Stabilization of a Quadrotor Helicopter under Input Saturations

    Get PDF
    This article investigates the robust stabilization of the rotational subsystem of a quadrotor against external inputs (disturbances, noises, and parametric uncertainties) by the LFT-based LPV technique. By establishing the LPV attitude model, the LPV robust controller is designed for the system. The weighting functions are computed by Cuckoo Search, a meta-heuristic optimization algorithm. Besides, the input saturations are also taken into account through the Anti-Windup compensation technique. Simulation results show the robustness of the closed-loop system against disturbances, measurement noises, and the parametric uncertainties

    Coprime factor based anti-windup synthesis for parameter-dependent systems

    No full text
    This paper presents a novel anti-windup compensator synthesis for linear parameter-varying (LPV) systems that have linear fractional transformation (LFT) representations. The LPV anti-windup synthesis is based on a right coprime factor description of the LPV plant to be controlled. It is shown that the anti-windup compensator synthesis reduces to solving a robust gain state-feedback control problem for the LPV/LFT system subject to input saturations. The synthesis takes advantage of unstructured multipliers (that is, multipliers that do not commute with the parameter structure) and exploits a detailed description of the parameter trajectory polytope. The anti-windup compensator is given in an explicit LPV/LFT form, sharing with the plant the same order and same parameter structure
    corecore