151,880 research outputs found
Structural panels
Vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are disclosed. These vinylpyridines form copolymers with bismaleimides which copolymers have good fire retardancy and decreased brittleness. The cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone. Reinforced composites made from the cured copolymers are disclosed as well
Stabilization of Polystyrene by Friedel-Crafts Chemistry: Effect of Position of Alcohol and the Catalyst
Polystyrene has been copolymerized with 4-vinylbenzyl alcohol, 4-(2-hydroxyethyl)styrene, and 4-(3-hydroxypropyl)styrene and it has been shown that thermal cross-linking of these copolymers is dependent upon the alcohol content. When the alcohol content is low, no thermal cross-linking is observed. When various phosphate esters are present as catalysts with these low alcohol content copolymers, cross-linking is observed at temperatures of about 250°C but not at lower temperatures. Cross-linking enhances the thermal stability of the copolymers. Studies of the thermal stability of the copolymers and their blends with the catalysts have been performed using thermogravimetric analysis and thermogravimetric analysis coupled to Fourier transform infrared spectroscopy. There is little difference in the thermal stability of all three copolymers and their blends with the catalysts
Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement
Efficient, one-pot preparation of synthetically challenging, high molecular weight (MW), narrowly dispersed brush block copolymers and random copolymers in high conversions was achieved by ring-opening metathesis (co)polymerization (ROMP) of various macromonomers (MMs) using the highly active, fast-initiating ruthenium olefin metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2RuCHPh. A series of random and block copolymers were prepared from a pair of MMs containing polylactide (PLA) and poly(n-butyl acrylate) (PnBA) side chains at similar MWs. Their self-assembly in the melt state was studied by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). In brush random copolymers containing approximately equal volume fractions of PLA and PnBA, the side chains segregate into lamellae with domain spacing of 14 nm as measured by SAXS, which was in good agreement with the lamellar thickness measured by AFM. The domain spacings and order−disorder transition temperatures of brush random copolymers were insensitive to the backbone length. In contrast, brush block copolymers containing approximately equal volume fractions of these MMs self-assembled into highly ordered lamellae with domain spacing over 100 nm. Their assemblies suggested that the brush block copolymer backbone adopted an extended conformation in the ordered state
Synthesis, thermal behavior, and aggregation in aqueous solution of poly(methyl methacrylate)-b-poly(2-hydroxyethyl methacrylate)
Indexación: ScieloABSTRACT
Amphiphilic block copolymers of poly(methyl methacrylate) PMMA and poly(2-hidroxyethyl methacrylate) PHEMA were synthesized by a two-step atom transfer radical polymerization (ATRP). Copolymers with various degrees of polymerization and different relative block sizes were obtained. The structure of the resulting polymers have been characterized and verified by FT-IR and 1H-NMR, molecular weight were determined by size exclusion chromatography analyses. The thermal properties of these polymers were investigated by differential scanning calorimetry DSC and thermogravimetric analysis TGA. The glass transition temperature of mono halogenated PMMA increases from 116 °C to 123 °C with increasing molecular weight, whereas the glass transition temperature of block copolymers depends slightly on polymer structure. The derivatives of TGA curves indicate that thermal degradation occurs in one stage. The self-assembly of PMMA-b-PHEMA in aqueous solution have been investigated by fluorescence probing methods. The critical micelle concentrations are in the range 10-6 - 10-7 M. The micropolarity sensed by pyrene is higher than in aggregates formed by block copolymers based on polystyrene.
Keywords: Block copolymers, glass transition temperature, thermogravimetric analysis, critical micelle concentration, fluorescence probing methods
Oxygen plasma resistant phosphine oxide containing imide/arylene copolymers
A series of oxygen plasma resistant imide/arylene ether copolymers were prepared by reacting anhydride-terminated poly(amide acids) and amine-terminated polyarylene ethers containing phosphine oxide units. Inherent viscosities for these copolymers ranged from 0.42 to 0.80 dL/g. After curing, the resulting copolymers had glass transition temperatures ranging from 224 C to 228 C. Solution cast films of the block copolymers were tough and flexible with tensile strength, tensile moduli, and elongation at break up to 16.1 ksi, 439 ksi, and 23 percent, respectively at 25 C and 9.1 ksi, 308 ksi and 97 percent, respectively at 150 C. The copolymers show a significant improvement in resistance to oxygen plasma when compared to the commercial polyimide Kapton. The imide/arylene ether copolymers containing phosphine oxide units are suitable as coatings, films, adhesives, and composite matrices
Self-assembly of triblock copolymers in aqueous solution
Indexación: ScieloThe aggregation of PE4VP-b-PS-b-PE4VP block copolymers was studied in aqueous solution. Triblock copolymers P4VP-b-PS-b-P4VP were synthesized by sequential anionic polymerization of poly(styrene) and poly(4-vinylpirydine) using sodium naphthalene as a bifunctional initiator. Subsequently, the 4-vinylpyridine units were quaternized with ethyl bromide to obtain cationic PE4VP-b-PS-b-PE4VP block copolymers. Both star and crew-cut micelles were formed. The concentrations at which micelles are formed cmc were determined, by steady-state and time-resolved fluorescence probing methods, as a function of quatemization degree. The results indicate that cmc of crew-cut micelles increases with increasing charge density of the PE4VP blocks. For star micelles there is not a clear dependency of cmc with the percentage of quatemization. The lifetime of pyrene fluorescence and the ratio I1/I3 were determined at concentrations of copolymers well above the cmc, and the results show that the location of pyrene into the micelle changes with the charge density of the micelle corona. The micropolarity sensed by pyrene decreases with increasing quatemization degree. The presence of aggregates was confirmed by transmission electronic microscopy.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072008000200013&lng=es&nrm=is
Polyesteramides with mixtures of poly(tetramethylene oxide) and 1,5 pentanediol
Segmented polyesteramides have been synthesized from N,N¿-bis(p-carbomethoxybenzoy)butanediamine as crystalline segments and mixtures of poly(tetramethylene oxide) (mol. wt. 1000) and 1,5-pentanediol as soft segments. The polymerization was carried out in the melt at 250°C for 1 h while vacuum was applied. The melting behaviour of the copolymers was studied by differential scanning calorimetry. The mechanical properties were investigated on injection moulded bars, using dynamic mechanical analysis. It was found that the copolymers with more than 50% molar ratio pentanediol showed two glass transition temperatures and two melting temperatures. The glass transition temperatures were not affected by the composition. The melting temperatures increased with pentanediol content. The pentanediol seems in part to be present as adjacent re-entry groups. The under-cooling for these copolymers was very small, which means that these segmented copolymers crystallize very fast
Characterization of the Soluble Nanoparticles Formed through Coulombic Interaction of Bovine Serum Albumin with Anionic Graft Copolymers at Low pH
A static light scattering (SLS) study of bovine serum albumin (BSA) mixtures
with two anionic graft copolymers of poly (sodium acrylate-co-sodium
2-acrylamido-2-methyl-1-propanesulphonate)-graft-poly (N,
N-dimethylacrylamide), with a high composition in poly (N,
N-dimethylacrylamide) (PDMAM) side chains, revealed the formation of oppositely
charged complexes, at pH lower than 4.9, the isoelectric point of BSA. The
core-corona nanoparticles formed at pH = 3.00, were characterized. Their
molecular weight and radius of gyration were determined by SLS, while their
hydrodynamic radius was determined by dynamic light scattering. Small angle
neutron scattering measurements were used to determine the radius of the
insoluble complexes, comprising the core of the particles. The values obtained
indicated that their size and aggregation number of the nanoparticles, were
smaller when the content of the graft copolymers in neutral PDMAM side chains
was higher. Such particles should be interesting drug delivery candidates, if
the gastrointestinal tract was to be used
100th Anniversary of Macromolecular Science Viewpoint: Opportunities in the Physics of Sequence-Defined Polymers
Polymer science has been driven by ever-increasing molecular complexity, as polymer synthesis expands an already-vast palette of chemical and architectural parameter space. Copolymers represent a key example, where simple homopolymers have given rise to random, alternating, gradient, and block copolymers. Polymer physics has provided the insight needed to explore this monomer sequence parameter space. The future of polymer science, however, must contend with further increases in monomer precision, as this class of macromolecules moves ever closer to the sequence-monodisperse polymers that are the workhorses of biology. The advent of sequence-defined polymers gives rise to opportunities for material design, with increasing levels of chemical information being incorporated into long-chain molecules; however, this also raises questions that polymer physics must address. What properties uniquely emerge from sequence-definition? Is this circumstance-dependent? How do we define and think about sequence dispersity? How do we think about a hierarchy of sequence effects? Are more sophisticated characterization methods, as well as theoretical and computational tools, needed to understand this class of macromolecules? The answers to these questions touch on many difficult scientific challenges, setting the stage for a rich future for sequence-defined polymers in polymer physics
- …
