2,576 research outputs found

    High-gradient plasma and laser accelerators

    Get PDF
    Novel high-gradient accelerators have demonstrated acceleration of electrons and positrons with electric field strengths of 1 to > 100 GeV/m. This is about 10 to 1000 times higher than achieved in RF-based accelerators, and as such they have the potential to overcome the limitations associated with RF cavities. Plasma-based accelerators have produced multi-GeV bunches with parameters approaching those suitable for a linear collider. These accelerators offer the prospect of near term, compact and cost-effective particle physics experiments that provide new physics possibilities supporting precision studies and the search for new particles. The expert panel has defined a long term R&D roadmap towards a compact collider with attractive intermediate experiments and studies. A delivery plan for the required R&D has been developed and includes work packages, deliverables, a minimal plan, connections to ongoing projects and an aspirational plan

    Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials

    Get PDF
    Quantum ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). Quantum ESPRESSO stands for "opEn Source Package for Research in Electronic Structure, Simulation, and Optimization". It is freely available to researchers around the world under the terms of the GNU General Public License. Quantum ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively-parallel architectures, and a great effort being devoted to user friendliness. Quantum ESPRESSO is evolving towards a distribution of independent and inter-operable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.Comment: 36 pages, 5 figures, resubmitted to J.Phys.: Condens. Matte

    Nuclear Theory and Science of the Facility for Rare Isotope Beams

    Full text link
    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. \keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.Comment: 20 pages, 7 figure

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt

    Recent developments in Quantum Monte-Carlo simulations with applications for cold gases

    Full text link
    This is a review of recent developments in Monte Carlo methods in the field of ultra cold gases. For bosonic atoms in an optical lattice we discuss path integral Monte Carlo simulations with worm updates and show the excellent agreement with cold atom experiments. We also review recent progress in simulating bosonic systems with long-range interactions, disordered bosons, mixtures of bosons, and spinful bosonic systems. For repulsive fermionic systems determinantal methods at half filling are sign free, but in general no sign-free method exists. We review the developments in diagrammatic Monte Carlo for the Fermi polaron problem and the Hubbard model, and show the connection with dynamical mean-field theory. We end the review with diffusion Monte Carlo for the Stoner problem in cold gases.Comment: 68 pages, 22 figures, review article; replaced with published versio

    European Strategy for Particle Physics -- Accelerator R&D Roadmap

    Get PDF
    The 2020 update of the European Strategy for Particle Physics emphasised the importance of an intensified and well-coordinated programme of accelerator R&D, supporting the design and delivery of future particle accelerators in a timely, affordable and sustainable way. This report sets out a roadmap for European accelerator R&D for the next five to ten years, covering five topical areas identified in the Strategy update. The R&D objectives include: improvement of the performance and cost-performance of magnet and radio-frequency acceleration systems; investigations of the potential of laser / plasma acceleration and energy-recovery linac techniques; and development of new concepts for muon beams and muon colliders. The goal of the roadmap is to document the collective view of the field on the next steps for the R&D programme, and to provide the evidence base to support subsequent decisions on prioritisation, resourcing and implementation.Comment: 270 pages, 58 figures. Editor: N. Mounet. LDG chair: D. Newbold. Panel chairs: P. V\'edrine (HFM), S. Bousson (RF), R. Assmann (plasma), D. Schulte (muon), M. Klein (ERL). Panel editors: B. Baudouy (HFM), L. Bottura (HFM), S. Bousson (RF), G. Burt (RF), R. Assmann (plasma), E. Gschwendtner (plasma), R. Ischebeck (plasma), C. Rogers (muon), D. Schulte (muon), M. Klein (ERL

    Towards Simulations of Binary Neutron Star Mergers and Core-Collapse Supernovae with GenASiS

    Get PDF
    This dissertation describes the current version of GenASiS and reports recent progress in its development. GenASiS is a new computational astrophysics code built for large-scale and multi-dimensional computer simulations of astrophysical phenomena, with primary emphasis on the simulations of neutron star mergers and core-collapse supernovae. Neutron star mergers are of high interest to the astrophysics community because they should be the prodigious source of gravitation waves and the most promising candidates for gravitational wave detection. Neutron star mergers are also thought to be associated with the production of short-duration, hard-spectral gamma-ray bursts, though the mechanism is not well understood. In contrast, core-collapse supernovae with massive progenitors are associated with long-duration, soft-spectral gamma-ray bursts, with the `collapsar\u27 hypothesis as the favored mechanism. Of equal interest is the mechanism of core-collapse supernovae themselves, which has been in the forefront of many research efforts for the better half of a century but remains a partially-solved mystery. In addition supernovae, and possibly neutron star mergers, are thought to be sites for the \emph{r}-process nucleosynthesis responsible for producing many of the heavy elements. Until we have a proper understanding of these events, we will have only a limited understanding of the origin of the elements. These questions provide some of the scientific motivations and guidelines for the development of GenASiS. In this document the equations and numerical scheme for Newtonian and relativistic magnetohydrodynamics are presented. A new FFT-based parallel solver for Poisson\u27s equation in GenASiS are described. Adaptive mesh refinement in GenASiS, and a novel way to solve Poisson\u27s equation on a mesh with refinement based on a multigrid algorithm, are also presented. Following these descriptions, results of simulations of neutron star mergers with GenASiS such as their evolution and the gravitational wave signals and spectra that they generate are shown. In the context of core-collapse supernovae, we explore the capacity of the stationary shock instability to generate magnetic fields starting from a weak, stationary, and radial magnetic field in an initially spherically symmetric fluid configuration that models the stalled shock in the post-bounce supernova environment. Our results show that the magnetic energy can be amplified by almost 4 orders of magnitude. The amplification mechanisms for the magnetic fields are then explained
    • 

    corecore