133,044 research outputs found

    The evolutionary origins of volition

    Get PDF
    It appears to be a straightforward implication of distributed cognition principles that there is no integrated executive control system (e.g. Brooks 1991, Clark 1997). If distributed cognition is taken as a credible paradigm for cognitive science this in turn presents a challenge to volition because the concept of volition assumes integrated information processing and action control. For instance the process of forming a goal should integrate information about the available action options. If the goal is acted upon these processes should control motor behavior. If there were no executive system then it would seem that processes of action selection and performance couldn’t be functionally integrated in the right way. The apparently centralized decision and action control processes of volition would be an illusion arising from the competitive and cooperative interaction of many relatively simple cognitive systems. Here I will make a case that this conclusion is not well-founded. Prima facie it is not clear that distributed organization can achieve coherent functional activity when there are many complex interacting systems, there is high potential for interference between systems, and there is a need for focus. Resolving conflict and providing focus are key reasons why executive systems have been proposed (Baddeley 1986, Norman and Shallice 1986, Posner and Raichle 1994). This chapter develops an extended theoretical argument based on this idea, according to which selective pressures operating in the evolution of cognition favor high order control organization with a ‘highest-order’ control system that performs executive functions

    Division of Labour and Social Coordination Modes : A simple simulation model

    Get PDF
    This paper presents a preliminary investigation of the relationship between the process of functional division of labour and the modes in which activities and plans are coordinated. We consider a very simple production process: a given heap of bank-notes has to be counted by a group of accountants. Because of limited individual capabilities and/or the possibilities of mistakes and external disturbances, the task has to be divided among several accountants and a hierarchical coordination problem arises. We can imagine several different ways of socially implementing coordination of devided tasks. 1) a central planner can compute the optimal architecture of the system; 2) a central planner can promote quantity adjustments by moving accountants from hierarchical levels where there exist idle resources to levels where resources are insufficient; 3) quasi-market mechanisms can use quantity or price signals for promoting decentralized adjustments. By means of a simple simulation model, based on Genetic Algorithms and Classifiers Systems, we can study the dynamic efficiency properties of each coordination mode and in particular their capability, speed and cost of adaptation to changing environmental situations (i.e. variations of the size of the task and/or variations of agents' capabilities). Such interesting issues as returns to scale, specialization and workers exploitation can be easily studied in the same model

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Information Technology as Coordination Infrastructure

    Get PDF
    Business information technology is traditionally viewed as information provision technology. In this view, organizations use their IT to implement databases that provide people with information when they want it. This view is persistent even though information provision is never an end in itself but always has the further purpose to support the coordination of activities of people. The role if IT as coordination technology became more prominent in the 1980s with the advent of network technology, that allowed activities across different businesses to be coordinated. This trend has accellerated since the growth of Internet usage, and today IT is used to support an increasingly varied range of processes performed by a variety of partners that do not all have a hierarchical relation to each other. This makes it difficult to analyze requirements for IT support and specify IT solutions: Business processes may not be well-defined, and interests of different businesses may clash. This report argues that to deal with this in requirements engineering and IT solution specification, business information technology should not be viewed as IT support for business processes but as IT support for the coordination of activities in one or more businesses. We will identify three basic coordination mechanisms, namely coordination by price, by management, and by shared norms, and for each of these mechanisms, we will identify requirements for IT support. The advent of flexible and standardized networking technology has facilitated the creation of novel coordination mechanisms within these three general paradigms, and we will give an inventory of generalized coordination mechanisms made possible by current IT. Finally, we will draw conclusions for requirements engineering methods for IT support for each of the coordination mechanisms identified by the framework

    How we might be able to Understand the Brain

    Get PDF
    Current methodologies in the neurosciences have difficulty in accounting for complex phenomena such as language, which can however be quite well characterised in phenomenological terms. This paper addresses the issue of unifying the two approaches. We typically understand complicated systems in terms of a collection of models, each characterisable in principle within a formal system, it being possible to explain higher-level properties in terms of lower level ones by means of a series of inferences based on these models. We consider the nervous system to be a mechanism for implementing the demands of an appropriate collection of models, each concerned with some aspect of brain and behaviour, the observer mechanism of Baas playing an important role in matching model and behaviour in this context. The discussion expounds these ideas in detail, showing their potential utility in connection with real problems of brain and behaviour, important areas where the ideas can be applied including the development of higher levels of abstraction, and linguistic behaviour, as described in the works of Karmiloff-Smith and Jackendoff respectively
    • …
    corecore