4,304 research outputs found

    Multi-Robot Multi-Room Exploration with Geometric Cue Extraction and Spherical Decomposition

    Full text link
    This work proposes an autonomous multi-robot exploration pipeline that coordinates the behaviors of robots in an indoor environment composed of multiple rooms. Contrary to simple frontier-based exploration approaches, we aim to enable robots to methodically explore and observe an unknown set of rooms in a structured building, keeping track of which rooms are already explored and sharing this information among robots to coordinate their behaviors in a distributed manner. To this end, we propose (1) a geometric cue extraction method that processes 3D map point cloud data and detects the locations of potential cues such as doors and rooms, (2) a spherical decomposition for open spaces used for target assignment. Using these two components, our pipeline effectively assigns tasks among robots, and enables a methodical exploration of rooms. We evaluate the performance of our pipeline using a team of up to 3 aerial robots, and show that our method outperforms the baseline by 36.6% in simulation and 26.4% in real-world experiments

    Introduction: The Fourth International Workshop on Epigenetic Robotics

    Get PDF
    As in the previous editions, this workshop is trying to be a forum for multi-disciplinary research ranging from developmental psychology to neural sciences (in its widest sense) and robotics including computational studies. This is a two-fold aim of, on the one hand, understanding the brain through engineering embodied systems and, on the other hand, building artificial epigenetic systems. Epigenetic contains in its meaning the idea that we are interested in studying development through interaction with the environment. This idea entails the embodiment of the system, the situatedness in the environment, and of course a prolonged period of postnatal development when this interaction can actually take place. This is still a relatively new endeavor although the seeds of the developmental robotics community were already in the air since the nineties (Berthouze and Kuniyoshi, 1998; Metta et al., 1999; Brooks et al., 1999; Breazeal, 2000; Kozima and Zlatev, 2000). A few had the intuition – see Lungarella et al. (2003) for a comprehensive review – that, intelligence could not be possibly engineered simply by copying systems that are “ready made” but rather that the development of the system fills a major role. This integration of disciplines raises the important issue of learning on the multiple scales of developmental time, that is, how to build systems that eventually can learn in any environment rather than program them for a specific environment. On the other hand, the hope is that robotics might become a new tool for brain science similarly to what simulation and modeling have become for the study of the motor system. Our community is still pretty much evolving and “under construction” and for this reason, we tried to encourage submissions from the psychology community. Additionally, we invited four neuroscientists and no roboticists for the keynote lectures. We received a record number of submissions (more than 50), and given the overall size and duration of the workshop together with our desire to maintain a single-track format, we had to be more selective than ever in the review process (a 20% acceptance rate on full papers). This is, if not an index of quality, at least an index of the interest that gravitates around this still new discipline
    • …
    corecore