1,146 research outputs found

    Decentralized DC MicroGrid Monitoring and Optimization via Primary Control Perturbations

    Full text link
    We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.Comment: Extended version including the appendix with proofs and derivations (This version should be used as a supplementary material to the original paper, soon to appear in IEEE Transactions on Signal Processing

    Distributed reactive power feedback control for voltage regulation and loss minimization

    Full text link
    We consider the problem of exploiting the microgenerators dispersed in the power distribution network in order to provide distributed reactive power compensation for power losses minimization and voltage regulation. In the proposed strategy, microgenerators are smart agents that can measure their phasorial voltage, share these data with the other agents on a cyber layer, and adjust the amount of reactive power injected into the grid, according to a feedback control law that descends from duality-based methods applied to the optimal reactive power flow problem. Convergence to the configuration of minimum losses and feasible voltages is proved analytically for both a synchronous and an asynchronous version of the algorithm, where agents update their state independently one from the other. Simulations are provided in order to illustrate the performance and the robustness of the algorithm, and the innovative feedback nature of such strategy is discussed

    Achieving the Dispatchability of Distribution Feeders through Prosumers Data Driven Forecasting and Model Predictive Control of Electrochemical Storage

    Get PDF
    We propose and experimentally validate a control strategy to dispatch the operation of a distribution feeder interfacing heterogeneous prosumers by using a grid-connected battery energy storage system (BESS) as a controllable element coupled with a minimally invasive monitoring infrastructure. It consists in a two-stage procedure: day-ahead dispatch planning, where the feeder 5-minute average power consumption trajectory for the next day of operation (called \emph{dispatch plan}) is determined, and intra-day/real-time operation, where the mismatch with respect to the \emph{dispatch plan} is corrected by applying receding horizon model predictive control (MPC) to decide the BESS charging/discharging profile while accounting for operational constraints. The consumption forecast necessary to compute the \emph{dispatch plan} and the battery model for the MPC algorithm are built by applying adaptive data driven methodologies. The discussed control framework currently operates on a daily basis to dispatch the operation of a 20~kV feeder of the EPFL university campus using a 750~kW/500~kWh lithium titanate BESS.Comment: Submitted for publication, 201

    Artificial Neural Networks for Control of a Grid-Connected Rectifier/Inverter Under Disturbance, Dynamic and Power Converter Switching Conditions

    Get PDF
    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using backpropagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system

    Frequency robust control in stand-alone microgrids with PV sources : design and sensitivity analysis

    No full text
    International audienceIn this paper, a robust H-infinity control strategy for frequency regulation is proposed in isolated microgrids (MGs) composed of diesel engine generators, photovoltaic (PV) sources, and storage units. First, the linear matrix inequalities (LMI) method is adopted to design a multi-variable H-infinity controller which ensures given specifications. In a second step, uncertainties in the storage device state of charge (SoC) are considered and a sensitivity analysis is carried out in order to determine the maximum variation range of SoC for which the dynamic performances are respected. The controller's robustness and performance in the presence of various load disturbances, PV output power variations, and the SoC uncertainty are validated through a series of nonlinear time-domain simulations performed with MATLAB/Simulink.</p
    corecore