126 research outputs found

    Control and Protection of MMC-Based HVDC Systems: A Review

    Get PDF
    The voltage source converter (VSC) based HVDC (high voltage direct current system) offers the possibility to integrate other renewable energy sources (RES) into the electrical grid, and allows power flow reversal capability. These appealing features of VSC technology led to the further development of multi-terminal direct current (MTDC) systems. MTDC grids provide the possibility of interconnection between conventional power systems and other large-scale offshore sources like wind and solar systems. The modular multilevel converter (MMC) has become a popular technology in the development of the VSC-MTDC system due to its salient features such as modularity and scalability. Although, the employment of MMC converter in the MTDC system improves the overall system performance. However, there are some technical challenges related to its operation, control, modeling and protection that need to be addressed. This paper mainly provides a comprehensive review and investigation of the control and protection of the MMC-based MTDC system. In addition, the issues and challenges associated with the development of the MMC-MTDC system have been discussed in this paper. It majorly covers the control schemes that provide the AC system support and state-of-the-art relaying algorithm/ dc fault detection and location algorithms. Different types of dc fault detection and location algorithms presented in the literature have been reviewed, such as local measurement-based, communication-based, traveling wave-based and artificial intelligence-based. Characteristics of the protection techniques are compared and analyzed in terms of various scenarios such as implementation in CBs, system configuration, selectivity, and robustness. Finally, future challenges and issues regarding the development of the MTDC system have been discussed in detail

    DC Grids : Motivation, Feasibility and Outstanding Issues : Status Report for the European Commission Deliverable : D5.4

    Get PDF
    Wind energy is already a mainstay of clean power generation in Europe, with over 100GW of capacity installed so far, and another 120GW anticipated by 2020 according to various analysts. Much of this capacity is expected to be installed offshore, as it is a windier and the source is steadier compared to onshore wind energy. Hence, offshore wind has been envisaged as making a critical contribution to Europe’s demand for electrical energy and to minimising the carbon emissions associated with meeting that demand

    Hybrid AC-High Voltage DC Grid Stability and Controls

    Get PDF
    abstract: The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient features.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Effective Damping Support through VSC-HVDC Links with Short-Term Overload Capability

    No full text
    Damping service provision through VSC-based HVDC links has been extensively covered in the literature. However, little or no attention has been paid to the available range of active and reactive power modulation when the HVDC link is already operating at rated capacity. In these conditions some overload capability is usually assumed, ignoring the physical constraints imposed by the safe operating area of the IGBT modules in the converter. This paper presents, in a unified framework, the provision of damping support from VSC-HVDC links equipped with additional control for short-term overload capability. The performance of a Model Predictive Control (MPC) damping controller that accounts for the extended P/Q operating area of the converter is analysed. Case studies are presented to show that the extracted short-term overload capability can significantly improve the damping support from VSC-HVDC links. Simulation results also include the impact of damping control action on the junction temperatures of the IGBT modules of the converters, quantifying the effect of this service on the semiconductor temperature dynamics

    Coordinated power oscillation damping from a VSC-HVDC grid integrated with offshore wind farms : using capacitors energy

    Get PDF
    This paper proposes a novel coordinated control strategy for a voltage source converter (VSC) based high-voltage direct current (HVDC) grid integrated offshore wind farms (OWFs) to damp the power system oscillations. A feature of this strategy is aiming to use the DC-link capacitor energy of offshore wind turbines (WTs) to reduce interactions between power oscillations and HVDC grid voltage when onshore grid-side VSCs (GSVSCs) modulate the active and reactive power injections. Unlike the previous communication-based method, the coordination from offshore WTs in this strategy depends on the local measurements of the HVDC grid voltage instead of the remote communication data from the onshore AC grid. A modified IEEE 39-bus power system with a 5-terminal VSC-HVDC grid connected to two OWFs has been developed to validate the effectiveness of this proposed strategy. Both the eigenvalue analysis and time-domain simulation results indicate that this strategy can significantly improve the power oscillation damping (POD). Comparative simulation studies also conclude that the proposed strategy has similar POD improvements to the previous communication-based method without the negative impact of communication delay from onshore to offshore

    A critical survey of technologies of large offshore wind farm integration : summary, advances, and perspectives

    Get PDF
    Offshore wind farms (OWFs) have received widespread attention for their abundant unexploited wind energy potential and convenient locations conditions. They are rapidly developing towards having large capacity and being located further away from shore. It is thus necessary to explore effective power transmission technologies to connect large OWFs to onshore grids. At present, three types of power transmission technologies have been proposed for large OWF integration. They are: high voltage alternating current (HVAC) transmission, high voltage direct current (HVDC) transmission, and low-frequency alternating current (LFAC) or fractional frequency alternating current transmission. This work undertakes a comprehensive review of grid connection technologies for large OWF integration. Compared with previous reviews, a more exhaustive summary is provided to elaborate HVAC, LFAC, and five HVDC topologies, consisting of line-commutated converter HVDC, voltage source converter HVDC, hybrid-HVDC, diode rectifier-based HVDC, and all DC transmission systems. The fault ride-through technologies of the grid connection schemes are also presented in detail to provide research references and guidelines for researchers. In addition, a comprehensive evaluation of the seven grid connection technologies for large OWFs is proposed based on eight specific indicators. Finally, eight conclusions and six perspectives are outlined for future research in integrating large OWFs
    • …
    corecore