51 research outputs found

    Evasion Paths in Mobile Sensor Networks

    Full text link
    Suppose that ball-shaped sensors wander in a bounded domain. A sensor doesn't know its location but does know when it overlaps a nearby sensor. We say that an evasion path exists in this sensor network if a moving intruder can avoid detection. In "Coordinate-free coverage in sensor networks with controlled boundaries via homology", Vin deSilva and Robert Ghrist give a necessary condition, depending only on the time-varying connectivity data of the sensors, for an evasion path to exist. Using zigzag persistent homology, we provide an equivalent condition that moreover can be computed in a streaming fashion. However, no method with time-varying connectivity data as input can give necessary and sufficient conditions for the existence of an evasion path. Indeed, we show that the existence of an evasion path depends not only on the fibrewise homotopy type of the region covered by sensors but also on its embedding in spacetime. For planar sensors that also measure weak rotation and distance information, we provide necessary and sufficient conditions for the existence of an evasion path

    Construction of the generalized Cech complex

    Full text link
    In this paper, we introduce an algorithm which constructs the generalized Cech complex. The generalized Cech complex represents the topology of a wireless network whose cells are different in size. This complex is often used in many application to locate the boundary holes or to save energy consumption in wireless networks. The complexity of a construction of the Cech complex to analyze the coverage structure is found to be a polynomial time

    Computing the kk-coverage of a wireless network

    Full text link
    Coverage is one of the main quality of service of a wirelessnetwork. kk-coverage, that is to be covered simultaneously by kknetwork nodes, is synonym of reliability and numerous applicationssuch as multiple site MIMO features, or handovers. We introduce here anew algorithm for computing the kk-coverage of a wirelessnetwork. Our method is based on the observation that kk-coverage canbe interpreted as kk layers of 11-coverage, or simply coverage. Weuse simplicial homology to compute the network's topology and areduction algorithm to indentify the layers of 11-coverage. Weprovide figures and simulation results to illustrate our algorithm.Comment: Valuetools 2019, Mar 2019, Palma de Mallorca, Spain. 2019. arXiv admin note: text overlap with arXiv:1802.0844

    Visualizing Sensor Network Coverage with Location Uncertainty

    Full text link
    We present an interactive visualization system for exploring the coverage in sensor networks with uncertain sensor locations. We consider a simple case of uncertainty where the location of each sensor is confined to a discrete number of points sampled uniformly at random from a region with a fixed radius. Employing techniques from topological data analysis, we model and visualize network coverage by quantifying the uncertainty defined on its simplicial complex representations. We demonstrate the capabilities and effectiveness of our tool via the exploration of randomly distributed sensor networks

    Positive Alexander Duality for Pursuit and Evasion

    Full text link
    Considered is a class of pursuit-evasion games, in which an evader tries to avoid detection. Such games can be formulated as the search for sections to the complement of a coverage region in a Euclidean space over a timeline. Prior results give homological criteria for evasion in the general case that are not necessary and sufficient. This paper provides a necessary and sufficient positive cohomological criterion for evasion in a general case. The principal tools are (1) a refinement of the Cech cohomology of a coverage region with a positive cone encoding spatial orientation, (2) a refinement of the Borel-Moore homology of the coverage gaps with a positive cone encoding time orientation, and (3) a positive variant of Alexander Duality. Positive cohomology decomposes as the global sections of a sheaf of local positive cohomology over the time axis; we show how this decomposition makes positive cohomology computable as a linear program.Comment: 19 pages, 6 figures; improvements made throughout: e.g. positive (co)homology generalized to arbitrary degrees; Positive Alexander Duality generalized from homological degrees 0,1; Morse and smoothness conditions generalized; illustrations of positive homology added. minor corrections in proofs, notation, organization, and language made throughout. variant of Borel-Moore homology now use
    • …
    corecore