6 research outputs found

    Algebraic superposition of LDGM codes for cooperative diversity

    Get PDF
    Abstract-This paper presents a technique for achieving cooperative spatial diversity using serially concatenated low density generator matrix (LDGM) codes. Specifically, we consider a scenario in which a pair of transceivers employ algebraic superposition of error control codes to effect spatial diversity at their common destination. The construction of LDGM codes from a sparse generator matrix makes them a natural fit for such a cooperative diversity scheme. The simple decoder structure for graph based codes reduces the complexity at the destination compared with previously-proposed schemes using algebraic superposition of convolutional codes and turbo-like decoding. The result is a system with low encoding and decoding complexity and improved error performance

    Iterative decoding scheme for cooperative communications

    Get PDF

    Enhancing diversity and multiplexing gains in multi-user wireless relay systems

    Get PDF
    The demand for higher transmission rates and better quality of service in modern wireless communications is endless. The use of multiple transmit or /and receive antennas has been considered as one of the most powerful approaches to facilitate high -speed and high -quality communications. However, in practical cellular systems, mobile terminals may not be able to support a multiple- antenna setup. Thus an emerging technique called cooperative diversity is under consideration to utilize the multi -hop relay concept to realize the advantages of multiple - antenna systems in multi -user single- antenna networks. Cooperative diversity has attracted much interest in recent years as a very promising direction for future wireless communication evolution.Due to the fact that in practice terminals cannot transmit and receive simultaneously (i.e. the half -duplex limitation), the diversity improvement brought by the standard cooperative diversity transmission protocols is in general accompanied by a multiplexing loss (equivalent to a reduction in transmission data rate in high signal -to -nose ratio (SNR)). The purpose of this thesis is to use advanced transmission protocols to provide both good diversity and multiplexing performance when using the practical repetition -coded decode - and -forward (DF) relaying strategy in uplink mobile -to -base station transmission of cellular systems.The task is fulfilled by relaxing the orthogonal channel allocation requirement of the standard protocols and by using two relays to take turns forwarding source information to destination. We start our analysis from an M- source two -relay one -destination network. Through diversity -multiplexing tradeoff (DMT) analysis, we prove that for an isolated -relay scenario and a strong -interference scenario, the considered approach effectively recovers the multiplexing loss induced by the standard protocols while still obtaining diversity improvement over direct source -destination transmission without considering relaying.In addition, since the optimal multiplexing gain of the considered system can be achieved by the above approach, we study further improving diversity performance for a two -source network. We analyze taking full advantage of the multiple- source structure, multiple -relay structure, and the capability of affording complex signal processing at the destination (base station). For all three cases, we prove that the diversity performance of the above approach can be enhanced without a significant loss of multiplexing performance or using complex coding strategies at relays. Since the good DMT performance is not affected by source -relay channel conditions, the protocols discussed in this thesis make relaying more beneficial

    16-QAM Hierarchical Modulation Optimization in Relay Cooperative Networks

    Get PDF
    16-QAM Hierarchical Modulation Optimization in Relay Cooperative Networks Sara Sallam Recently, the concept of cooperative networks has attracted special attention in the field of wireless communications. This is due to their ability in achieving diversity with no extra hardware cost. The main drawback that characterizes cooperative networks is that they require extra transmission time slots compared to the traditional non-cooperative networks. Several strategies have been proposed in order to mitigate this disadvantage. One of the most recently adopted techniques is the use of hierarchical modulation. Hierarchical modulation was originally used in Digital Video Broadcast (DVB) applications. Lately, it has been applied in cooperative networks for its ability to transmit relative high data rate with acceptable performance. In this thesis, the application of a 4/16 QAM hierarchical modulation in cooperative networks is examined. This study focuses on a downlink cellular network scenario, composed of a Base Station, a Relay and two destinations. The Base Station intends to transmit two different streams of data to these two destinations by concatenating the two streams and broadcasting the resulting sequence using a non-uniform 4/16 QAM hierarchical modulation. Unlike previous work, the main contribution in this thesis is the optimization of the 16QAM constellation’s parameters according to each user’s channel condition. In other words, this method gives each user’s data the priority it needs in order to be detected as correctly as possible at the destination. Explicit closed form expressions of Hierarchical modulation Bit Error Rate in relay cooperative networks are derived. These BER expressions are used in order to select the constellation’s parameters that will achieve total minimum BER in coded and un-coded schemes. Results prove that the proposed method achieve noticeable improvement in both users performance compared to the use of uniform 16QAM constellation

    Cooperative diversity based on code superposition

    No full text
    corecore