19,492 research outputs found

    Relay Assisted Cooperative OSTBC Communication with SNR Imbalance and Channel Estimation Errors

    Full text link
    In this paper, a two-hop relay assisted cooperative Orthogonal Space-Time Block Codes (OSTBC) transmission scheme is considered for the downlink communication of a cellular system, where the base station (BS) and the relay station (RS) cooperate and transmit data to the user equipment (UE) in a distributed fashion. We analyze the impact of the SNR imbalance between the BS-UE and RS-UE links, as well as the imperfect channel estimation at the UE receiver. The performance is analyzed in the presence of Rayleigh flat fading and our results show that the SNR imbalance does not impact the spatial diversity order. On the other hand, channel estimation errors have a larger impact on the system performance. Simulation results are then provided to confirm the analysis.Comment: 5 pages, 3 figures, IEEE 69th Vehicular Technology Conferenc

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Mitigating Interference in Content Delivery Networks by Spatial Signal Alignment: The Approach of Shot-Noise Ratio

    Full text link
    Multimedia content especially videos is expected to dominate data traffic in next-generation mobile networks. Caching popular content at the network edge has emerged to be a solution for low-latency content delivery. Compared with the traditional wireless communication, content delivery has a key characteristic that many signals coexisting in the air carry identical popular content. They, however, can interfere with each other at a receiver if their modulation-and-coding (MAC) schemes are adapted to individual channels following the classic approach. To address this issue, we present a novel idea of content adaptive MAC (CAMAC) where adapting MAC schemes to content ensures that all signals carry identical content are encoded using an identical MAC scheme, achieving spatial MAC alignment. Consequently, interference can be harnessed as signals, to improve the reliability of wireless delivery. In the remaining part of the paper, we focus on quantifying the gain CAMAC can bring to a content-delivery network using a stochastic-geometry model. Specifically, content helpers are distributed as a Poisson point process, each of which transmits a file from a content database based on a given popularity distribution. It is discovered that the successful content-delivery probability is closely related to the distribution of the ratio of two independent shot noise processes, named a shot-noise ratio. The distribution itself is an open mathematical problem that we tackle in this work. Using stable-distribution theory and tools from stochastic geometry, the distribution function is derived in closed form. Extending the result in the context of content-delivery networks with CAMAC yields the content-delivery probability in different closed forms. In addition, the gain in the probability due to CAMAC is shown to grow with the level of skewness in the content popularity distribution.Comment: 32 pages, to appear in IEEE Trans. on Wireless Communicatio

    Analysis of Multi-Cell Downlink Cooperation with a Constrained Spatial Model

    Full text link
    Multi-cell cooperation (MCC) mitigates intercell interference and improves throughput at the cell edge. This paper considers a cooperative downlink, whereby cell-edge mobiles are served by multiple cooperative base stations. The cooperating base stations transmit identical signals over paths with non-identical path losses, and the receiving mobile performs diversity combining. The analysis in this paper is driven by a new expression for the conditional outage probability when signals arriving over different paths are combined in the presence of noise and interference, where the conditioning is with respect to the network topology and shadowing. The channel model accounts for path loss, shadowing, and Nakagami fading, and the Nakagami fading parameters do not need to be identical for all paths. To study performance over a wide class of network topologies, a random spatial model is adopted, and performance is found by statistically characterizing the rates provided on the downlinks. To model realistic networks, the model requires a minimum separation among base stations. Having adopted a realistic model and an accurate analysis, the paper proceeds to determine performance under several resource-allocation policies and provides insight regarding how the cell edge should be defined.Comment: 6 pages, 3 figures, IEEE Global Telecommun. Conf. (GLOBECOM), 2013, to appear. arXiv admin note: text overlap with arXiv:1210.366
    • …
    corecore