6 research outputs found

    Full-Duplex Relay with Jamming Protocol for Improving Physical-Layer Security

    Full text link
    This paper proposes a jointly cooperative relay and jamming protocol based on full-duplex (FD) capable relay to increase the source-destination secrecy rate in the presence of different types of eavesdroppers. In this so called \textit{FD-Relay with jamming (FDJ)} protocol, the FD-Relay, first, simultaneously receives data and sends jamming to the eavesdropper, and, then, forwards the data, while the source jams the eavesdropper. Achievable secrecy rates of the proposed FDJ in presence of different eavesdropper types and self-interference (SI) are derived and compared with those of the traditional half-duplex (HD) relay. The adaptive power allocation for secrecy rate maximization in a multi-carrier scenario for both proposed FDJ and HD-Relay is formulated as a non-convex optimization problem and corresponding iterative solution algorithm is developed using the difference-of-two-concave-functions (DC) programming technique. The simulation results confirm that FDJ offers significant improvements in the secrecy rate over the HD-Relay.Comment: PIMRC 201

    Robust Beamforming for Secrecy Rate in Cooperative Cognitive Radio Multicast Communications

    Full text link
    In this paper, we propose a cooperative approach to improve the security of both primary and secondary systems in cognitive radio multicast communications. During their access to the frequency spectrum licensed to the primary users, the secondary unlicensed users assist the primary system in fortifying security by sending a jamming noise to the eavesdroppers, while simultaneously protect themselves from eavesdropping. The main objective of this work is to maximize the secrecy rate of the secondary system, while adhering to all individual primary users' secrecy rate constraints. In the case of passive eavesdroppers and imperfect channel state information knowledge at the transceivers, the utility function of interest is nonconcave and involved constraints are nonconvex, and thus, the optimal solutions are troublesome. To address this problem, we propose an iterative algorithm to arrive at a local optimum of the considered problem. The proposed iterative algorithm is guaranteed to achieve a Karush-Kuhn-Tucker solution.Comment: 6 pages, 4 figures, IEEE ICC 201
    corecore