25,337 research outputs found

    DRIVE: A Digital Network Oracle for Cooperative Intelligent Transportation Systems

    Full text link
    In a world where Artificial Intelligence revolutionizes inference, prediction and decision-making tasks, Digital Twins emerge as game-changing tools. A case in point is the development and optimization of Cooperative Intelligent Transportation Systems (C-ITSs): a confluence of cyber-physical digital infrastructure and (semi)automated mobility. Herein we introduce Digital Twin for self-dRiving Intelligent VEhicles (DRIVE). The developed framework tackles shortcomings of traditional vehicular and network simulators. It provides a flexible, modular, and scalable implementation to ensure large-scale, city-wide experimentation with a moderate computational cost. The defining feature of our Digital Twin is a unique architecture allowing for submission of sequential queries, to which the Digital Twin provides instantaneous responses with the "state of the world", and hence is an Oracle. With such bidirectional interaction with external intelligent agents and realistic mobility traces, DRIVE provides the environment for development, training and optimization of Machine Learning based C-ITS solutions.Comment: Accepted for publication at IEEE ISCC 202

    Decentralized Cooperative Planning for Automated Vehicles with Continuous Monte Carlo Tree Search

    Full text link
    Urban traffic scenarios often require a high degree of cooperation between traffic participants to ensure safety and efficiency. Observing the behavior of others, humans infer whether or not others are cooperating. This work aims to extend the capabilities of automated vehicles, enabling them to cooperate implicitly in heterogeneous environments. Continuous actions allow for arbitrary trajectories and hence are applicable to a much wider class of problems than existing cooperative approaches with discrete action spaces. Based on cooperative modeling of other agents, Monte Carlo Tree Search (MCTS) in conjunction with Decoupled-UCT evaluates the action-values of each agent in a cooperative and decentralized way, respecting the interdependence of actions among traffic participants. The extension to continuous action spaces is addressed by incorporating novel MCTS-specific enhancements for efficient search space exploration. The proposed algorithm is evaluated under different scenarios, showing that the algorithm is able to achieve effective cooperative planning and generate solutions egocentric planning fails to identify

    A Learning-Based Framework for Two-Dimensional Vehicle Maneuver Prediction over V2V Networks

    Full text link
    Situational awareness in vehicular networks could be substantially improved utilizing reliable trajectory prediction methods. More precise situational awareness, in turn, results in notably better performance of critical safety applications, such as Forward Collision Warning (FCW), as well as comfort applications like Cooperative Adaptive Cruise Control (CACC). Therefore, vehicle trajectory prediction problem needs to be deeply investigated in order to come up with an end to end framework with enough precision required by the safety applications' controllers. This problem has been tackled in the literature using different methods. However, machine learning, which is a promising and emerging field with remarkable potential for time series prediction, has not been explored enough for this purpose. In this paper, a two-layer neural network-based system is developed which predicts the future values of vehicle parameters, such as velocity, acceleration, and yaw rate, in the first layer and then predicts the two-dimensional, i.e. longitudinal and lateral, trajectory points based on the first layer's outputs. The performance of the proposed framework has been evaluated in realistic cut-in scenarios from Safety Pilot Model Deployment (SPMD) dataset and the results show a noticeable improvement in the prediction accuracy in comparison with the kinematics model which is the dominant employed model by the automotive industry. Both ideal and nonideal communication circumstances have been investigated for our system evaluation. For non-ideal case, an estimation step is included in the framework before the parameter prediction block to handle the drawbacks of packet drops or sensor failures and reconstruct the time series of vehicle parameters at a desirable frequency
    • …
    corecore