2,961 research outputs found

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Raptor Encoding for Low-Latency Concurrent Multi-PDU Session Transmission with Security Consideration in B5G Edge Network

    Full text link
    In B5G edge networks, end-to-end low-latency and high-reliability transmissions between edge computing nodes and terminal devices are essential. This paper investigates the queue-aware coding scheduling transmission of randomly arriving data packets, taking into account potential eavesdroppers in edge networks. To address these concerns, we introduce SCLER, a Protocol Data Units (PDU) Raptor-encoded multi-path transmission method that overcomes the challenges of a larger attack surface in Concurrent Multipath Transfer (CMT), excessive delay due to asymmetric delay\&bandwidth, and lack of interaction among PDU session bearers. We propose a secure and reliable transmission scheme based on Raptor encoding and distribution that incorporates a queue length-aware encoding strategy. This strategy is modeled using Constrained Markov Decision Process (CMDP), and we solve the constraint optimization problem of optimal decision-making based on a threshold strategy. Numerical results indicate that SCLER effectively reduces data leakage risks while achieving the optimal balance between delay and reliability, thereby ensuring data security. Importantly, the proposed system is compatible with current mobile networks and demonstrates practical applicability

    An SDR-Based Experimental Study of Reliable and Low-Latency Ethernet-Based Fronthaul with MAC-PHY Split

    Get PDF
    Cloud-Radio Access Network (RAN) is one of the architectural solutions for those mobile networks that aim to provide an infrastructure that satisfies the communication needs of a wide range of services and deployments. In Cloud-RAN, functions can be flexibly split between central and distributed units, which enables the use of different types of transport network. Ethernet-based fronthaul can be an attractive solution for Cloud-RAN. On the one hand, the deployment of Ethernet-based fronthaul enables Cloud-RAN to provide more diverse, flexible and cost-efficient solutions. On the other hand, Ethernet-based fronthaul requires packetized communication, which imposes challenges to delivering stringent latency requirements between RAN functionalities. In this paper, we set up a hardware experiment based on Cloud-RAN with a low layer split, particularly between medium access control and the physical layer. The aim is to demonstrate how multi-path and channel coding over the fronthaul can improve fronthaul reliability while ensuring that: (i) latency results meet the standard requirements; and (ii) the overall system operates properly. Our results show that the proposed solution can improve fronthaul reliability while latency remains below a strict latency bound required by the 3rd Generation Partnership Project for this functional split
    corecore