809,731 research outputs found

    Enhanced Optical Cooling of Ion Beams for LHC

    Full text link
    The possibility of the enhanced optical cooling (EOC) of Lead ions in LHC is investigated. Non-exponential feature of cooling and requirements to the ring lattice, optical and laser systems are discussed. Comparison with optical stochastic cooling (OSC) is represented.Comment: 4 page

    Evaluation of thermal comfort conditions in a classroom equipped with radiant cooling systems and subjected to uniform convective environment

    Get PDF
    The aim of this work is to evaluate numerically the human thermal response that 24 students and 1 teacher feel in a classroom equipped with radiant cooling systems and subjected to uniform convective environments, in lightly warm conditions. The evolution of thermal comfort conditions, using the PMV index, is made by the multi-nodal human thermal comfort model. In this numerical model, that works in transient or steady-state conditions and simulates simultaneously a group of persons, the three-dimensional body is divided in 24 cylindrical and 1 spherical elements. Each element is divided in four parts (core, muscle, fat and skin), sub-divided in several layers, and protected by several clothing layers. This numerical model is divided in six parts: human body thermal system, clothing thermal system, integral equations resolution system, thermoregulatory system, heat exchange between the body and the environment and thermal comfort evaluation. Seven different radiant systems are combined to three convective environments. In the radiant systems (1) no radiant system without warmed curtain, (2) no radiant system with warmed curtain, (3) radiant floors cooling system with warmed curtain, (4) radiant panels cooling system with warmed curtain, (5) radiant ceiling cooling system with warmed curtain, (6) radiant floor and panels cooling system with warmed curtain and (7) radiant ceiling and panels cooling system with warmed curtain are analysed, while in the convective environments (1) without air velocity field and with uniform air velocity field of (2) 0.2 m/s and (3) 0.6 m/s are also analysed. The internal air temperature and internal surfaces temperature are 28 degrees C, the radiant cooling surfaces temperature are 19 degrees C and the warmed internal curtains surfaces temperatures, subjected to direct solar radiation, are 40 degrees C. The numerical model calculates the Mean Radiant Temperature field, the human bodies' temperatures field and the thermal comfort level, for the 25 occupants, for the 21 analysed situations. Without uniform air velocity field, when only one individual radiant cooling system is used, the Predicted Percentage of Dissatisfied people is lowest when the radiant floor cooling system is applied and is highest when the radiant panel cooling system is applied. When are combined the radiant ceiling or the floor cooling systems with the radiant panel cooling system the Predicted Percentage of Dissatisfied people decreases. When the uniform air velocity increases the thermal comfort level, that the occupants are subjected, increases. When the radiant floor cooling system or the combination of radiant floor and panel cooling systems without uniform air velocity field is applied, the Category C is verified for some occupants. However, with a convective uniform air velocity field of 0.2 m/s the Category B is verified and with a convective uniform air velocity field of 0.6 m/s the Category A is verify for some occupants. In the last situation the Category C is verified, in general, for all occupants. (C) 2010 Elsevier Inc. All rights reserved

    Technical solutions to prevent heat stress induced crop growth reduction for three climatic regions in Mexico

    Get PDF
    In the last 15 years a significant increase in greenhouse area has occurred in Mexico, from a modest 50 hectares in 1990 to over 2,000 hectares in 2004. The rapid increase in greenhouse area is a result of an attractive export market, USA. Mexican summer midday temperatures are well above crop optimum and cooling is needed if heat stress induced crop growth reduction is to be prevented. The objective of this study was to determine the effectiveness and feasibility of greenhouse cooling systems for tomato culture under desert, humid tropic and temperate Mexican weather conditions. These climate regions are represented by Mexicali, Merida and Huejutla respectively. The cooling systems included a variety of passive and active systems, which through an engineering design methodology were combined to suit the climate conditions of the 3 regions. The evaluation was conducted via simulation, taking into account the most important temperature effects on crop growth and yield. The results showed that the cooling systems were effective in decreasing heat stress to plants. Investment costs of greenhouse with cooling equipment were under USD 50 m-2 and operational costs were under USD 10 m-2 for all equipment combinations and treatments except for the humid tropic climate of Merida. Solutions for Merida were both economically and physically not feasible due to too high humidity levels. This model study clearly indicates that cooling is feasible in desert and moderate climate regions of Mexico but in humid tropic climate regions feasibility is a problem. Application of design methodology and design evaluation with help of simulation greatly contributed to pointing out effective and non-effective solutions to reduce heat stress in hot climates

    An Investigation of Stochastic Cooling in the Framework of Control Theory

    Full text link
    This report provides a description of unbunched beam stochastic cooling in the framework of control theory. The main interest in the investigation is concentrated on the beam stability in an active cooling system. A stochastic cooling system must be considered as a closed-loop, similar to the feedback systems used to damp collective instabilities. These systems, which are able to act upon themselves, are potentially unstable. The self-consistent solution for the beam motion is derived by means of a mode analysis of the collective beam motion. This solution yields a criterion for the stability of each collective mode. The expressions also allow for overlapping frequency bands in the beam spectrum and thus are valid over the entire frequency range. Having established the boundaries of stability in this way, the Fokker-Planck equation is used to describe the cooling process. This description does not include collective effects and thus a stable beam must be assumed. Hence the predictions about the cooling process following from the Fokker-Planck equation only make physical sense within the boundaries of beam stability. Finally it is verified that the parameters of the cooling system which give the best cooling results are compatible with the stability of the beam.Comment: 64 pages, latex, 11 eps-figures appended as uuencoded file, german hyphenation corrected I
    corecore