6,825 research outputs found

    Design, Performance, and Complexity of CRC-Aided List Decoding of Convolutional and Polar Codes for Short Messages

    Full text link
    Motivated by the need to communicate short control messages in 5G and beyond, this paper carefully designs codes for cyclic redundancy check (CRC)-aided list decoding of tail-biting convolutional codes (TBCCs) and polar codes. Both codes send a 32-bit message using an 11-bit CRC and 512 transmitted bits. We aim to provide a careful, fair comparison of the error performance and decoding complexity of polar and TBCC techniques for a specific case. Specifically, a TBCC is designed to match the rate of a (512, 43) polar code, and optimal 11-bit CRCs for both codes are designed. The paper examines the distance spectra of the polar and TBCC codes, illuminating the different distance structures for the two code types. We consider both adaptive and non-adaptive CRC-aided list decoding schemes. For polar codes, an adaptive decoder must start with a larger list size to avoid an error floor. For rate-32/512 codes with an 11-bit CRC, the optimized CRC-TBCC design achieves a lower total failure rate than the optimized CRC-polar design. Simulations showed that the optimized CRC-TBCC design achieved significantly higher throughput than the optimized CRC-polar design, so that the TBCC solution achieved a lower total failure rate while requiring less computational complexity.Comment: First revision submitted to IEEE Transactions on Communication

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    A CRC usefulness assessment for adaptation layers in satellite systems

    Get PDF
    This paper assesses the real usefulness of CRCs in today's satellite network-to-link adaptation layers under the lights of enhanced error control and framing techniques, focusing on the DVB-S and DVB-S2 standards. Indeed, the outer block codes of their FEC schemes (Reed-Solomon and BCH, respectively) can provide very accurate error-detection information to the receiver in addition to their correction capabilities, at virtually no cost. This handy feature could be used to manage on a frame-by-frame basis what CRCs do locally, on the frames' contents, saving the bandwidth and processing load associated with them, and paving the way for enhanced transport of IP over DVB-S2. Mathematical and experimental results clearly show that if FEC has been properly congured for combined error correction and detection, having an uncorrected event after FEC decoding is likely to be an extremely improbable event. Under such conditions, it seems possible and attractive to optimize the way global error-control is done over satellite links by reducing the role of CRCs, or even by removing them from the overall encapsulation process

    Luby Transform Coding Aided Iterative Detection for Downlink SDMA Systems

    No full text
    A Luby Transform (LT) coded downlink Spatial Division Multiple Access (SDMA) system using iterative detection is proposed, which invokes a low-complexity near-Maximum-Likelihood (ML) Sphere Decoder (SD). The Ethernet-based Internet section of the transmission chain inflicts random packet erasures, which is modelled by the Binary Erasure Channel (BEC), which the wireless downlink imposes both fading and noise. A novel log-Likelihood Ratio based packet reliability metric is used for identifying the channel-decoded packets, which are likely to be error-infested. Packets having residual errors must not be passed on to the KT decoder for the sake of avoiding LT-decoding –induced error propagation. The proposed scheme is capable of maintaining an infinitesimally low packet error ratio in the downlink of the wireless Internet for Eb/n0 values in excess of about 3dB
    corecore