7 research outputs found

    Observer variation-aware medical image segmentation by combining deep learning and surrogate-assisted genetic algorithms

    Full text link
    There has recently been great progress in automatic segmentation of medical images with deep learning algorithms. In most works observer variation is acknowledged to be a problem as it makes training data heterogeneous but so far no attempts have been made to explicitly capture this variation. Here, we propose an approach capable of mimicking different styles of segmentation, which potentially can improve quality and clinical acceptance of automatic segmentation methods. In this work, instead of training one neural network on all available data, we train several neural networks on subgroups of data belonging to different segmentation variations separately. Because a priori it may be unclear what styles of segmentation exist in the data and because different styles do not necessarily map one-on-one to different observers, the subgroups should be automatically determined. We achieve this by searching for the best data partition with a genetic algorithm. Therefore, each network can learn a specific style of segmentation from grouped training data. We provide proof of principle results for open-sourced prostate segmentation MRI data with simulated observer variations. Our approach provides an improvement of up to 23% (depending on simulated variations) in terms of Dice and surface Dice coefficients compared to one network trained on all data.Comment: 11 pages, 5 figures, SPIE Medical Imaging Conference - 202

    Heed the noise in performance evaluations in neural architecture search

    Get PDF
    Neural Architecture Search (NAS) has recently become a topic of great interest. However, there is a potentially impactful issue within NAS that remains largely unrecognized: noise. Due to stochastic factors in neural network initialization, training, and the chosen train/validation dataset split, the performance evaluation of a neural network architecture, which is often based on a single learning run, is also stochastic. This may have a particularly large impact if a dataset is small. We therefore propose to reduce this noise by evaluating architectures based on average performance over multiple network training runs using different random seeds and cross-validation. We perform experiments for a combinatorial optimization formulation of NAS in which we vary noise reduction levels. We use the same computational budget for each noise level in terms of network training runs, i.e., we allow less architecture evaluations when averaging over more training runs. Multiple search algorithms are considered, including evolutionary algorithms which generally perform well for NAS. We use two publicly available datasets from the medical image segmentation domain where datasets are often limited and variability among samples is often high. Our results show that reducing noise in architecture evaluations enables finding better architectures by all considered search algorithms

    Data variation-aware medical image segmentation

    Get PDF
    Deep learning algorithms have become the golden standard for segmentation of medical imaging data. In most works, the variability and heterogeneity of real clinical data is acknowledged to still be a problem. One way to automatically overcome this is to capture and exploit this variation explicitly. Here, we propose an approach that improves on our previous work in this area and explain how it potentially can improve clinical acceptance of (semi-)automatic segmentation methods. In contrast to a standard neural network that produces one segmentation, we propose to use a multi-path U net network that produces multiple segmentation variants, presumably corresponding to the variations that reside in the dataset. Different paths of the network are trained on disjoint data subsets. Because a priori it may be unclear what variations exist in the data, the subsets should be automatically determined. This is achieved by searching for the best data partitioning with an evolutionary optimization algorithm. Because each network path can become more specialized when trained on a more homogeneous data subset, better segmentation quality can be achieved. In practical usage, various automatically produced segmentations can be presented to a medical expert, from which the preferred segmentation can be selected. In experiments with a real clinical dataset of CT scans with prostate segmentations, our approach provides an improvement of several percentage points in terms of Dice and surface Dice coefficients compared to when all network paths are trained on all training data. Noticeably, the largest improvement occurs in the upper part of the prostate that is known to be most prone to inter-observer segmentation variation.</p

    Convolutional neural network surrogate-assisted GOMEA

    No full text
    We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization of problems with discrete categorical variables. Specifically, we leverage the strengths of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state-of-the-art GA, and, for the first time, propose to use a convolutional neural network (CNN) as a surrogate model. We propose to train the model on pairwise fitness differences to decrease the number of evaluated solutions that is required to achieve adequate surrogate model training. In providing a proof of principle, we consider relatively standard CNNs, and demonstrate that their capacity is already sufficient to accurately learn fitness landscapes of various well-known benchmark functions. The proposed CS-GOMEA is compared with GOMEA and the widely-used Bayesian-optimization-based expensive optimization frameworks SMAC and Hyperopt, in terms of the number of evaluations that is required to achieve the optimum. In our experiments on binary problems with dimensionalities up to 400 variables, CS-GOMEA always found the optimum, whereas SMAC and Hyperopt failed for problem sizes over 16 variables. Moreover, the number of evaluated solutions required by CS-GOMEA to find the optimum was found to scale much better than GOMEA

    Convolutional neural network surrogate-assisted GOMEA

    Get PDF
    We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization of problems with discrete categorical variables. Specifically, we leverage the strengths of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state-of-the-art GA, and, for the first time, propose to use a convolutional neural network (CNN) as a surrogate model. We propose to train the model on pairwise fitness differences to decrease the number of evaluated solutions that is required to achieve adequate surrogate model training. In providing a proof of principle, we consider relatively standard CNNs, and demonstrate that their capacity is already sufficient to accurately learn fitness landscapes of various well-known benchmark functions. The proposed CS-GOMEA is compared with GOMEA and the widely-used Bayesian-optimization-based expensive optimization frameworks SMAC and Hyperopt, in terms of the number of evaluations that is required to achieve the optimum. In our experiments on binary problems with dimensionalities up to 400 variables, CS-GOMEA always found the optimum, whereas SMAC and Hyperopt failed for problem sizes over 16 variables. Moreover, the number of evaluated solutions required by CS-GOMEA to find the optimum was found to scale much better than GOMEA
    corecore