3,978 research outputs found

    Convolutional higher order matching pursuit

    Get PDF
    We introduce a greedy generalised convolutional algorithm to efficiently locate an unknown number of sources in a series of (possibly multidimensional) images, where each source contributes a localised and low-dimensional but otherwise variable signal to its immediate spatial neighbourhood. Our approach extends convolutional matching pursuit in two ways: first, it takes the signal generated by each source to be a variable linear combination of aligned dictionary elements; and second, it executes the pursuit in the domain of high-order multivariate cumulant statistics. The resulting algorithm adapts to varying signal and noise distributions to flexibly recover source signals in a variety of settings

    Compositional Model based Fisher Vector Coding for Image Classification

    Full text link
    Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to depict the generation process of local features. However, the representative power of the GMM could be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes and the number of prototypes is usually small in FVC. To handle this limitation, in this paper we break the convention which assumes that a local feature is drawn from one of few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as the linear combination of multiple key components and the combination weight is a latent random variable. In this way, we can greatly enhance the representative power of the generative model of FVC. To implement our idea, we designed two particular generative models with such a compositional mechanism.Comment: Fixed typos. 16 pages. Appearing in IEEE T. Pattern Analysis and Machine Intelligence (TPAMI

    Convolutional Feature Masking for Joint Object and Stuff Segmentation

    Full text link
    The topic of semantic segmentation has witnessed considerable progress due to the powerful features learned by convolutional neural networks (CNNs). The current leading approaches for semantic segmentation exploit shape information by extracting CNN features from masked image regions. This strategy introduces artificial boundaries on the images and may impact the quality of the extracted features. Besides, the operations on the raw image domain require to compute thousands of networks on a single image, which is time-consuming. In this paper, we propose to exploit shape information via masking convolutional features. The proposal segments (e.g., super-pixels) are treated as masks on the convolutional feature maps. The CNN features of segments are directly masked out from these maps and used to train classifiers for recognition. We further propose a joint method to handle objects and "stuff" (e.g., grass, sky, water) in the same framework. State-of-the-art results are demonstrated on benchmarks of PASCAL VOC and new PASCAL-CONTEXT, with a compelling computational speed.Comment: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

    Get PDF
    We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of generic dictionaries optimized for sparse coding of image patches. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image. Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. To illustrate general applicability, we also show initial results on semantic part labeling of human faces. The effectiveness of our approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.Comment: to appear in Asian Conference on Computer Vision (ACCV), 201
    • …
    corecore