30 research outputs found

    Convolutional Dictionary Regularizers for Tomographic Inversion

    Full text link
    There has been a growing interest in the use of data-driven regularizers to solve inverse problems associated with computational imaging systems. The convolutional sparse representation model has recently gained attention, driven by the development of fast algorithms for solving the dictionary learning and sparse coding problems for sufficiently large images and data sets. Nevertheless, this model has seen very limited application to tomographic reconstruction problems. In this paper, we present a model-based tomographic reconstruction algorithm using a learnt convolutional dictionary as a regularizer. The key contribution is the use of a data-dependent weighting scheme for the l1 regularization to construct an effective denoising method that is integrated into the inversion using the Plug-and-Play reconstruction framework. Using simulated data sets we demonstrate that our approach can improve performance over traditional regularizers based on a Markov random field model and a patch-based sparse representation model for sparse and limited-view tomographic data sets

    Convolutional Sparse Representations with Gradient Penalties

    Full text link
    While convolutional sparse representations enjoy a number of useful properties, they have received limited attention for image reconstruction problems. The present paper compares the performance of block-based and convolutional sparse representations in the removal of Gaussian white noise. While the usual formulation of the convolutional sparse coding problem is slightly inferior to the block-based representations in this problem, the performance of the convolutional form can be boosted beyond that of the block-based form by the inclusion of suitable penalties on the gradients of the coefficient maps

    Image Enhancement in Foggy Images using Dark Channel Prior and Guided Filter

    Get PDF
    Haze is very apparent in images shot during periods of bad weather (fog). The image's clarity and readability are both diminished as a result. As part of this work, we suggest a method for improving the quality of the hazy image and for identifying any objects hidden inside it. To address this, we use the picture enhancement techniques of Dark Channel Prior and Guided Filter. The Saliency map is then used to segment the improved image and identify passing vehicles. Lastly, we describe our method for calculating the actual distance in units from a camera-equipped vehicle of an item (another vehicle).Our proposed solution can warn the driver based on the distance to help them prevent an accident. Our suggested technology improves images and accurately detects vehicles nearly 100% of the time

    Semi-supervised Transfer Learning for Image Rain Removal

    Full text link
    Single image rain removal is a typical inverse problem in computer vision. The deep learning technique has been verified to be effective for this task and achieved state-of-the-art performance. However, previous deep learning methods need to pre-collect a large set of image pairs with/without synthesized rain for training, which tends to make the neural network be biased toward learning the specific patterns of the synthesized rain, while be less able to generalize to real test samples whose rain types differ from those in the training data. To this issue, this paper firstly proposes a semi-supervised learning paradigm toward this task. Different from traditional deep learning methods which only use supervised image pairs with/without synthesized rain, we further put real rainy images, without need of their clean ones, into the network training process. This is realized by elaborately formulating the residual between an input rainy image and its expected network output (clear image without rain) as a specific parametrized rain streaks distribution. The network is therefore trained to adapt real unsupervised diverse rain types through transferring from the supervised synthesized rain, and thus both the short-of-training-sample and bias-to-supervised-sample issues can be evidently alleviated. Experiments on synthetic and real data verify the superiority of our model compared to the state-of-the-arts.Comment: 10 page
    corecore