2,389 research outputs found

    Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction

    Full text link
    Accelerating the data acquisition of dynamic magnetic resonance imaging (MRI) leads to a challenging ill-posed inverse problem, which has received great interest from both the signal processing and machine learning community over the last decades. The key ingredient to the problem is how to exploit the temporal correlation of the MR sequence to resolve the aliasing artefact. Traditionally, such observation led to a formulation of a non-convex optimisation problem, which were solved using iterative algorithms. Recently, however, deep learning based-approaches have gained significant popularity due to its ability to solve general inversion problems. In this work, we propose a unique, novel convolutional recurrent neural network (CRNN) architecture which reconstructs high quality cardiac MR images from highly undersampled k-space data by jointly exploiting the dependencies of the temporal sequences as well as the iterative nature of the traditional optimisation algorithms. In particular, the proposed architecture embeds the structure of the traditional iterative algorithms, efficiently modelling the recurrence of the iterative reconstruction stages by using recurrent hidden connections over such iterations. In addition, spatiotemporal dependencies are simultaneously learnt by exploiting bidirectional recurrent hidden connections across time sequences. The proposed algorithm is able to learn both the temporal dependency and the iterative reconstruction process effectively with only a very small number of parameters, while outperforming current MR reconstruction methods in terms of computational complexity, reconstruction accuracy and speed.Comment: Published in IEEE Transactions on Medical Imagin

    Synthesizing dynamic MRI using long-term recurrent convolutional networks

    Full text link
    A method is proposed for converting raw ultrasound signals of respiratory organ motion into high frame rate dynamic MRI using a long-term recurrent convolutional neural network. Ultrasound signals were acquired using a single-element transducer, referred to here as `organ-configuration motion' (OCM) sensor, while sagittal MR images were simultaneously acquired. Both streams of data were used for training a cascade of convolutional layers, to extract relevant features from raw ultrasound, followed by a recurrent neural network, to learn its temporal dynamics. The network was trained with MR images on the output, and was employed to predict MR images at a temporal resolution of 100 frames per second, based on ultrasound input alone, without any further MR scanner input. The method was validated on 7 subjects.Comment: 8 pages, 3 figure

    CRDN: Cascaded Residual Dense Networks for Dynamic MR Imaging with Edge-enhanced Loss Constraint

    Full text link
    Dynamic magnetic resonance (MR) imaging has generated great research interest, as it can provide both spatial and temporal information for clinical diagnosis. However, slow imaging speed or long scanning time is still one of the challenges for dynamic MR imaging. Most existing methods reconstruct Dynamic MR images from incomplete k-space data under the guidance of compressed sensing (CS) or low rank theory, which suffer from long iterative reconstruction time. Recently, deep learning has shown great potential in accelerating dynamic MR. Our previous work proposed a dynamic MR imaging method with both k-space and spatial prior knowledge integrated via multi-supervised network training. Nevertheless, there was still a certain degree of smooth in the reconstructed images at high acceleration factors. In this work, we propose cascaded residual dense networks for dynamic MR imaging with edge-enhance loss constraint, dubbed as CRDN. Specifically, the cascaded residual dense networks fully exploit the hierarchical features from all the convolutional layers with both local and global feature fusion. We further utilize the total variation (TV) loss function, which has the edge enhancement properties, for training the networks

    Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction

    Full text link
    Many real-world signal sources are complex-valued, having real and imaginary components. However, the vast majority of existing deep learning platforms and network architectures do not support the use of complex-valued data. MRI data is inherently complex-valued, so existing approaches discard the richer algebraic structure of the complex data. In this work, we investigate end-to-end complex-valued convolutional neural networks - specifically, for image reconstruction in lieu of two-channel real-valued networks. We apply this to magnetic resonance imaging reconstruction for the purpose of accelerating scan times and determine the performance of various promising complex-valued activation functions. We find that complex-valued CNNs with complex-valued convolutions provide superior reconstructions compared to real-valued convolutions with the same number of trainable parameters, over a variety of network architectures and datasets

    DIMENSION: Dynamic MR Imaging with Both K-space and Spatial Prior Knowledge Obtained via Multi-Supervised Network Training

    Full text link
    Dynamic MR image reconstruction from incomplete k-space data has generated great research interest due to its capability in reducing scan time. Nevertheless, the reconstruction problem is still challenging due to its ill-posed nature. Most existing methods either suffer from long iterative reconstruction time or explore limited prior knowledge. This paper proposes a dynamic MR imaging method with both k-space and spatial prior knowledge integrated via multi-supervised network training, dubbed as DIMENSION. Specifically, the DIMENSION architecture consists of a frequential prior network for updating the k-space with its network prediction and a spatial prior network for capturing image structures and details. Furthermore, a multisupervised network training technique is developed to constrain the frequency domain information and reconstruction results at different levels. The comparisons with classical k-t FOCUSS, k-t SLR, L+S and the state-of-the-art CNN-based method on in vivo datasets show our method can achieve improved reconstruction results in shorter time.Comment: 11 pages, 12 figure

    Recurrent Generative Adversarial Networks for Proximal Learning and Automated Compressive Image Recovery

    Full text link
    Recovering images from undersampled linear measurements typically leads to an ill-posed linear inverse problem, that asks for proper statistical priors. Building effective priors is however challenged by the low train and test overhead dictated by real-time tasks; and the need for retrieving visually "plausible" and physically "feasible" images with minimal hallucination. To cope with these challenges, we design a cascaded network architecture that unrolls the proximal gradient iterations by permeating benefits from generative residual networks (ResNet) to modeling the proximal operator. A mixture of pixel-wise and perceptual costs is then deployed to train proximals. The overall architecture resembles back-and-forth projection onto the intersection of feasible and plausible images. Extensive computational experiments are examined for a global task of reconstructing MR images of pediatric patients, and a more local task of superresolving CelebA faces, that are insightful to design efficient architectures. Our observations indicate that for MRI reconstruction, a recurrent ResNet with a single residual block effectively learns the proximal. This simple architecture appears to significantly outperform the alternative deep ResNet architecture by 2dB SNR, and the conventional compressed-sensing MRI by 4dB SNR with 100x faster inference. For image superresolution, our preliminary results indicate that modeling the denoising proximal demands deep ResNets.Comment: 11 pages, 11 figure

    Visual Language Modeling on CNN Image Representations

    Full text link
    Measuring the naturalness of images is important to generate realistic images or to detect unnatural regions in images. Additionally, a method to measure naturalness can be complementary to Convolutional Neural Network (CNN) based features, which are known to be insensitive to the naturalness of images. However, most probabilistic image models have insufficient capability of modeling the complex and abstract naturalness that we feel because they are built directly on raw image pixels. In this work, we assume that naturalness can be measured by the predictability on high-level features during eye movement. Based on this assumption, we propose a novel method to evaluate the naturalness by building a variant of Recurrent Neural Network Language Models on pre-trained CNN representations. Our method is applied to two tasks, demonstrating that 1) using our method as a regularizer enables us to generate more understandable images from image features than existing approaches, and 2) unnaturalness maps produced by our method achieve state-of-the-art eye fixation prediction performance on two well-studied datasets

    Accelerating MR Imaging via Deep Chambolle-Pock Network

    Full text link
    Compressed sensing (CS) has been introduced to accelerate data acquisition in MR Imaging. However, CS-MRI methods suffer from detail loss with large acceleration and complicated parameter selection. To address the limitations of existing CS-MRI methods, a model-driven MR reconstruction is proposed that trains a deep network, named CP-net, which is derived from the Chambolle-Pock algorithm to reconstruct the in vivo MR images of human brains from highly undersampled complex k-space data acquired on different types of MR scanners. The proposed deep network can learn the proximal operator and parameters among the Chambolle-Pock algorithm. All of the experiments show that the proposed CP-net achieves more accurate MR reconstruction results, outperforming state-of-the-art methods across various quantitative metrics.Comment: 4 pages, 5 figures, 1 table, Accepted at 2019 IEEE 41st Engineering in Medicine and Biology Conference (EMBC 2019

    Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI with Limited Data

    Full text link
    In this work we reduce undersampling artefacts in two-dimensional (2D2D) golden-angle radial cine cardiac MRI by applying a modified version of the U-net. We train the network on 2D2D spatio-temporal slices which are previously extracted from the image sequences. We compare our approach to two 2D2D and a 3D3D Deep Learning-based post processing methods and to three iterative reconstruction methods for dynamic cardiac MRI. Our method outperforms the 2D2D spatially trained U-net and the 2D2D spatio-temporal U-net. Compared to the 3D3D spatio-temporal U-net, our method delivers comparable results, but with shorter training times and less training data. Compared to the Compressed Sensing-based methods ktkt-FOCUSS and a total variation regularised reconstruction approach, our method improves image quality with respect to all reported metrics. Further, it achieves competitive results when compared to an iterative reconstruction method based on adaptive regularization with Dictionary Learning and total variation, while only requiring a small fraction of the computational time. A persistent homology analysis demonstrates that the data manifold of the spatio-temporal domain has a lower complexity than the spatial domain and therefore, the learning of a projection-like mapping is facilitated. Even when trained on only one single subject without data-augmentation, our approach yields results which are similar to the ones obtained on a large training dataset. This makes the method particularly suitable for training a network on limited training data. Finally, in contrast to the spatial 2D2D U-net, our proposed method is shown to be naturally robust with respect to image rotation in image space and almost achieves rotation-equivariance where neither data-augmentation nor a particular network design are required.Comment: To be published in IEEE Transactions on Medical Imagin

    RARE: Image Reconstruction using Deep Priors Learned without Ground Truth

    Full text link
    Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets (CNNs). In this work, we propose to broaden the current denoiser-centric view of RED by considering priors corresponding to networks trained for more general artifact-removal. The key benefit of the proposed family of algorithms, called regularization by artifact-removal (RARE), is that it can leverage priors learned on datasets containing only undersampled measurements. This makes RARE applicable to problems where it is practically impossible to have fully-sampled groundtruth data for training. We validate RARE on both simulated and experimentally collected data by reconstructing a free-breathing whole-body 3D MRIs into ten respiratory phases from heavily undersampled k-space measurements. Our results corroborate the potential of learning regularizers for iterative inversion directly on undersampled and noisy measurements.Comment: In press for IEEE Journal of Special Topics in Signal Processin
    corecore