23,588 research outputs found

    Convolutional Neural Networks with Recurrent Neural Filters

    Full text link
    We introduce a class of convolutional neural networks (CNNs) that utilize recurrent neural networks (RNNs) as convolution filters. A convolution filter is typically implemented as a linear affine transformation followed by a non-linear function, which fails to account for language compositionality. As a result, it limits the use of high-order filters that are often warranted for natural language processing tasks. In this work, we model convolution filters with RNNs that naturally capture compositionality and long-term dependencies in language. We show that simple CNN architectures equipped with recurrent neural filters (RNFs) achieve results that are on par with the best published ones on the Stanford Sentiment Treebank and two answer sentence selection datasets.Comment: Accepted by EMNLP 2018 as a short pape

    Convolutional LSTM Networks for Subcellular Localization of Proteins

    Get PDF
    Machine learning is widely used to analyze biological sequence data. Non-sequential models such as SVMs or feed-forward neural networks are often used although they have no natural way of handling sequences of varying length. Recurrent neural networks such as the long short term memory (LSTM) model on the other hand are designed to handle sequences. In this study we demonstrate that LSTM networks predict the subcellular location of proteins given only the protein sequence with high accuracy (0.902) outperforming current state of the art algorithms. We further improve the performance by introducing convolutional filters and experiment with an attention mechanism which lets the LSTM focus on specific parts of the protein. Lastly we introduce new visualizations of both the convolutional filters and the attention mechanisms and show how they can be used to extract biological relevant knowledge from the LSTM networks

    Convolutional Gated Recurrent Neural Network Incorporating Spatial Features for Audio Tagging

    Get PDF
    Environmental audio tagging is a newly proposed task to predict the presence or absence of a specific audio event in a chunk. Deep neural network (DNN) based methods have been successfully adopted for predicting the audio tags in the domestic audio scene. In this paper, we propose to use a convolutional neural network (CNN) to extract robust features from mel-filter banks (MFBs), spectrograms or even raw waveforms for audio tagging. Gated recurrent unit (GRU) based recurrent neural networks (RNNs) are then cascaded to model the long-term temporal structure of the audio signal. To complement the input information, an auxiliary CNN is designed to learn on the spatial features of stereo recordings. We evaluate our proposed methods on Task 4 (audio tagging) of the Detection and Classification of Acoustic Scenes and Events 2016 (DCASE 2016) challenge. Compared with our recent DNN-based method, the proposed structure can reduce the equal error rate (EER) from 0.13 to 0.11 on the development set. The spatial features can further reduce the EER to 0.10. The performance of the end-to-end learning on raw waveforms is also comparable. Finally, on the evaluation set, we get the state-of-the-art performance with 0.12 EER while the performance of the best existing system is 0.15 EER.Comment: Accepted to IJCNN2017, Anchorage, Alaska, US
    • …
    corecore