2 research outputs found

    Convolutional 3D to 2D Patch Conversion for Pixel-wise Glioma Segmentation in MRI Scans

    Full text link
    Structural magnetic resonance imaging (MRI) has been widely utilized for analysis and diagnosis of brain diseases. Automatic segmentation of brain tumors is a challenging task for computer-aided diagnosis due to low-tissue contrast in the tumor subregions. To overcome this, we devise a novel pixel-wise segmentation framework through a convolutional 3D to 2D MR patch conversion model to predict class labels of the central pixel in the input sliding patches. Precisely, we first extract 3D patches from each modality to calibrate slices through the squeeze and excitation (SE) block. Then, the output of the SE block is fed directly into subsequent bottleneck layers to reduce the number of channels. Finally, the calibrated 2D slices are concatenated to obtain multimodal features through a 2D convolutional neural network (CNN) for prediction of the central pixel. In our architecture, both local inter-slice and global intra-slice features are jointly exploited to predict class label of the central voxel in a given patch through the 2D CNN classifier. We implicitly apply all modalities through trainable parameters to assign weights to the contributions of each sequence for segmentation. Experimental results on the segmentation of brain tumors in multimodal MRI scans (BraTS'19) demonstrate that our proposed method can efficiently segment the tumor regions

    Modality Completion via Gaussian Process Prior Variational Autoencoders for Multi-Modal Glioma Segmentation

    Full text link
    In large studies involving multi protocol Magnetic Resonance Imaging (MRI), it can occur to miss one or more sub-modalities for a given patient owing to poor quality (e.g. imaging artifacts), failed acquisitions, or hallway interrupted imaging examinations. In some cases, certain protocols are unavailable due to limited scan time or to retrospectively harmonise the imaging protocols of two independent studies. Missing image modalities pose a challenge to segmentation frameworks as complementary information contributed by the missing scans is then lost. In this paper, we propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan. MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations. Instead of designing one network for each possible subset of present sub-modalities or using frameworks to mix feature maps, missing data can be generated from a single model based on all the available samples. We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing. Our experiments against competitive segmentation baselines with missing sub-modality on BraTS'19 dataset indicate the effectiveness of the MGP-VAE model for segmentation tasks.Comment: Accepted in MICCAI 202
    corecore