27,971 research outputs found

    Determining Bus Stop Locations using Deep Learning and Time Filtering

    Get PDF
    This paper presents an intelligent bus stop determination from bus Global Positioning System (GPS) trajectories. A mixture of deep neural networks and a time filtering algorithm is used in the proposed algorithm. A deep neural network uses the speed histogram and azimuth angle at each location as input features. A deep neural networks consists of the convolutional neural networks (CNN), fully connected networks, and bidirectional Long-Short Term Memory (LSTM) networks. It predicts the soft decisions of bus stops at all locations along the route. The time filtering technique was adopted to refine the results obtained from the LSTM network. The time histograms of all locations was built where the high potential timestamps are extracted. Then, a linear regression is used to produce an approximate reliable timestamp. Each time distribution can be derived using data updated at that time slot and compared to a reference distribution. Locations are predicted as bus stop locations when timestamp distributions close to the reference distributions. Our technique was tested on real bus service GPS data from National Science and Technology Development Agency (NATDA, Thailand). The proposed method can outperform other existing bus stop detection systems

    Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition

    Full text link
    In this paper we address the problem of human action recognition from video sequences. Inspired by the exemplary results obtained via automatic feature learning and deep learning approaches in computer vision, we focus our attention towards learning salient spatial features via a convolutional neural network (CNN) and then map their temporal relationship with the aid of Long-Short-Term-Memory (LSTM) networks. Our contribution in this paper is a deep fusion framework that more effectively exploits spatial features from CNNs with temporal features from LSTM models. We also extensively evaluate their strengths and weaknesses. We find that by combining both the sets of features, the fully connected features effectively act as an attention mechanism to direct the LSTM to interesting parts of the convolutional feature sequence. The significance of our fusion method is its simplicity and effectiveness compared to other state-of-the-art methods. The evaluation results demonstrate that this hierarchical multi stream fusion method has higher performance compared to single stream mapping methods allowing it to achieve high accuracy outperforming current state-of-the-art methods in three widely used databases: UCF11, UCFSports, jHMDB.Comment: Published as a conference paper at WACV 201

    Deep Neural Network Architectures for Modulation Classification

    Full text link
    In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 10 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to deliver performance that exceeds that of expert-based approaches. Here, we follow the framework of [1] and find deep neural network architectures that deliver higher accuracy than the state of the art. We tested the architecture of [1] and found it to achieve an accuracy of approximately 75% of correctly recognizing the modulation type. We first tune the CNN architecture of [1] and find a design with four convolutional layers and two dense layers that gives an accuracy of approximately 83.8% at high SNR. We then develop architectures based on the recently introduced ideas of Residual Networks (ResNet [2]) and Densely Connected Networks (DenseNet [3]) to achieve high SNR accuracies of approximately 83.5% and 86.6%, respectively. Finally, we introduce a Convolutional Long Short-term Deep Neural Network (CLDNN [4]) to achieve an accuracy of approximately 88.5% at high SNR.Comment: 5 pages, 10 figures, In proc. Asilomar Conference on Signals, Systems, and Computers, Nov. 201
    • …
    corecore