2 research outputs found

    Convolution with Logarithmic Filter Groups for Efficient Shallow CNN

    Full text link
    In convolutional neural networks (CNNs), the filter grouping in convolution layers is known to be useful to reduce the network parameter size. In this paper, we propose a new logarithmic filter grouping which can capture the nonlinearity of filter distribution in CNNs. The proposed logarithmic filter grouping is installed in shallow CNNs applicable in a mobile application. Experiments were performed with the shallow CNNs for classification tasks. Our classification results on Multi-PIE dataset for facial expression recognition and CIFAR-10 dataset for object classification reveal that the compact CNN with the proposed logarithmic filter grouping scheme outperforms the same network with the uniform filter grouping in terms of accuracy and parameter efficiency. Our results indicate that the efficiency of shallow CNNs can be improved by the proposed logarithmic filter grouping.Comment: 8 pages, 4 figures, 3 tables. Changes in abstract, result representations and typo correction

    A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects

    Full text link
    Convolutional Neural Network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention both of industry and academia in the past few years. The existing reviews mainly focus on the applications of CNN in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide novel ideas and prospects in this fast-growing field as much as possible. Besides, not only two-dimensional convolution but also one-dimensional and multi-dimensional ones are involved. First, this review starts with a brief introduction to the history of CNN. Second, we provide an overview of CNN. Third, classic and advanced CNN models are introduced, especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for function selection. Fifth, the applications of one-dimensional, two-dimensional, and multi-dimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed to serve as guidelines for future work.Comment: 21 pages, 33 figures, journa
    corecore