2 research outputs found

    Real-time energy-efficient traffic control via convex optimization

    Get PDF
    This article proposes a macroscopic traffic control strategy to reduce fuel consumption of vehicles on highways. By implementing Greenshields fundamental diagram, the solution to Moskowitz equations is expressed as linear functions with respect to vehicle inflow and outflow, which leads to generation of a linear traffic flow model. In addition, we build a quadratic cost function in terms of vehicle volume to estimate fuel consumption rate based on COPERT model. A convex quadratic optimization problem is then formulated to generate energy-efficient traffic control decisions in real-time. Simulation results demonstrate significant reduction of fuel consumption on testing highway sections under peak traffic demands of busy hours

    Distributed optimization of multi-agent systems: Framework, local optimizer, and applications

    Get PDF
    Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network
    corecore