2,596 research outputs found

    Covering and Separation for Permutations and Graphs

    Get PDF
    This is a thesis of two parts, focusing on covering and separation topics of extremal combinatorics and graph theory, two major themes in this area. They entail the existence and properties of collections of combinatorial objects which together either represent all objects (covering) or can be used to distinguish all objects from each other (separation). We will consider a range of problems which come under these areas. The first part will focus on shattering k-sets with permutations. A family of permutations is said to shatter a given k-set if the permutations cover all possible orderings of the k elements. In particular, we investigate the size of permutation families which cover t orders for every possible k-set as well as study the problem of determining the largest number of k-sets that can be shattered by a family with given size. We provide a construction for a small permutation family which shatters every k-set. We also consider constructions of large families which do not shatter any triple. The second part will be concerned with the problem of separating path systems. A separating path system for a graph is a family of paths where, for any two edges, there is a path containing one edge but not the other. The aim is to find the size of the smallest such family. We will study the size of the smallest separating path system for a range of graphs, including complete graphs, complete bipartite graphs, and lattice-type graphs. A key technique we introduce is the use of generator paths - constructed to utilise the symmetric nature of Kn. We continue this symmetric approach for bipartite graphs and study the limitations of the method. We consider lattice-type graphs as an example of the most efficient possible separating systems for any graph

    A Simple and General Axiomatization of Average Utility Maximization for Infinite Streams

    Get PDF
    This paper provides, first, the most general preference axiomatization of average utility (AU) maximization over infinite sequences presently available, reaching almost complete generality (only restriction: all periodic sequences should be contained in the domain). Here, infinite sequences may designate intertemporal outcomes streams where AU models patience, or welfare allocations where AU models fairness, or decision under ambiguity where AU models complete ignorance. Second, as a methodological contribution, this paper shows that infinite-dimensional representations can be simpler, rather than more complex, than finite-dimensional ones: infinite dimensions provide a richness that is convenient rather than cumbersome. In particular, (empirically problematic) continuity assumptions are not needed. Continuity is optional

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Exact Completeness of LP Hierarchies for Linear Codes

    Get PDF

    Integer Programming Approaches for Distributionally Robust Chance Constraints with Adjustable Risks

    Full text link
    We study distributionally robust chance constrained programs (DRCCPs) with individual chance constraints and random right-hand sides. The DRCCPs treat the risk tolerances associated with the distributionally robust chance constraints (DRCCs) as decision variables to trade off between the system cost and risk of violations by penalizing the risk tolerances in the objective function. We consider two types of Wasserstein ambiguity sets: one with finite support and one with a continuum of realizations. By exploring the hidden discrete structures, we develop mixed integer programming reformulations under the two types of ambiguity sets to determine the optimal risk tolerance for the chance constraint. Valid inequalities are derived to strengthen the formulations. We test instances with transportation problems of diverse sizes and a demand response management problem

    Witnessing environment dimension through temporal correlations

    Full text link
    We introduce a framework to compute upper bounds for temporal correlations achievable in open quantum system dynamics, obtained by repeated measurements on the system. As these correlations arise by virtue of the environment acting as a memory resource, such bounds are witnesses for the minimal dimension of an effective environment compatible with the observed statistics. These witnesses are derived from a hierarchy of semidefinite programs with guaranteed asymptotic convergence. We compute non-trivial bounds for various sequences involving a qubit system and a qubit environment, and compare the results to the best known quantum strategies producing the same outcome sequences. Our results provide a numerically tractable method to determine bounds on multi-time probability distributions in open quantum system dynamics and allow for the witnessing of effective environment dimensions through probing of the system alone.Comment: 24 pages, 7 figure

    Adjustable robust optimization with nonlinear recourses

    Get PDF
    Over the last century, mathematical optimization has become a prominent tool for decision making. Its systematic application in practical fields such as economics, logistics or defense led to the development of algorithmic methods with ever increasing efficiency. Indeed, for a variety of real-world problems, finding an optimal decision among a set of (implicitly or explicitly) predefined alternatives has become conceivable in reasonable time. In the last decades, however, the research community raised more and more attention to the role of uncertainty in the optimization process. In particular, one may question the notion of optimality, and even feasibility, when studying decision problems with unknown or imprecise input parameters. This concern is even more critical in a world becoming more and more complex —by which we intend, interconnected —where each individual variation inside a system inevitably causes other variations in the system itself. In this dissertation, we study a class of optimization problems which suffer from imprecise input data and feature a two-stage decision process, i.e., where decisions are made in a sequential order —called stages —and where unknown parameters are revealed throughout the stages. The applications of such problems are plethora in practical fields such as, e.g., facility location problems with uncertain demands, transportation problems with uncertain costs or scheduling under uncertain processing times. The uncertainty is dealt with a robust optimization (RO) viewpoint (also known as "worst-case perspective") and we present original contributions to the RO literature on both the theoretical and practical side

    Simultaneous Multiparametric and Multidimensional Cardiovascular Magnetic Resonance Imaging

    Get PDF
    No abstract available

    When Deep Learning Meets Polyhedral Theory: A Survey

    Full text link
    In the past decade, deep learning became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural networks in tasks such as computer vision and natural language processing. Meanwhile, the structure of neural networks converged back to simpler representations based on piecewise constant and piecewise linear functions such as the Rectified Linear Unit (ReLU), which became the most commonly used type of activation function in neural networks. That made certain types of network structure \unicode{x2014}such as the typical fully-connected feedforward neural network\unicode{x2014} amenable to analysis through polyhedral theory and to the application of methodologies such as Linear Programming (LP) and Mixed-Integer Linear Programming (MILP) for a variety of purposes. In this paper, we survey the main topics emerging from this fast-paced area of work, which bring a fresh perspective to understanding neural networks in more detail as well as to applying linear optimization techniques to train, verify, and reduce the size of such networks

    Towards Reliable and Accurate Global Structure-from-Motion

    Get PDF
    Reconstruction of objects or scenes from sparse point detections across multiple views is one of the most tackled problems in computer vision. Given the coordinates of 2D points tracked in multiple images, the problem consists of estimating the corresponding 3D points and cameras\u27 calibrations (intrinsic and pose), and can be solved by minimizing reprojection errors using bundle adjustment. However, given bundle adjustment\u27s nonlinear objective function and iterative nature, a good starting guess is required to converge to global minima. Global and Incremental Structure-from-Motion methods appear as ways to provide good initializations to bundle adjustment, each with different properties. While Global Structure-from-Motion has been shown to result in more accurate reconstructions compared to Incremental Structure-from-Motion, the latter has better scalability by starting with a small subset of images and sequentially adding new views, allowing reconstruction of sequences with millions of images. Additionally, both Global and Incremental Structure-from-Motion methods rely on accurate models of the scene or object, and under noisy conditions or high model uncertainty might result in poor initializations for bundle adjustment. Recently pOSE, a class of matrix factorization methods, has been proposed as an alternative to conventional Global SfM methods. These methods use VarPro - a second-order optimization method - to minimize a linear combination of an approximation of reprojection errors and a regularization term based on an affine camera model, and have been shown to converge to global minima with a high rate even when starting from random camera calibration estimations.This thesis aims at improving the reliability and accuracy of global SfM through different approaches. First, by studying conditions for global optimality of point set registration, a point cloud averaging method that can be used when (incomplete) 3D point clouds of the same scene in different coordinate systems are available. Second, by extending pOSE methods to different Structure-from-Motion problem instances, such as Non-Rigid SfM or radial distortion invariant SfM. Third and finally, by replacing the regularization term of pOSE methods with an exponential regularization on the projective depth of the 3D point estimations, resulting in a loss that achieves reconstructions with accuracy close to bundle adjustment
    • …
    corecore