19 research outputs found

    Tensor Canonical Correlation Analysis for Multi-View Dimension Reduction

    Full text link
    © 2015 IEEE. Canonical correlation analysis (CCA) has proven an effective tool for two-view dimension reduction due to its profound theoretical foundation and success in practical applications. In respect of multi-view learning, however, it is limited by its capability of only handling data represented by two-view features, while in many real-world applications, the number of views is frequently many more. Although the ad hoc way of simultaneously exploring all possible pairs of features can numerically deal with multi-view data, it ignores the high order statistics (correlation information) which can only be discovered by simultaneously exploring all features. Therefore, in this work, we develop tensor CCA (TCCA) which straightforwardly yet naturally generalizes CCA to handle the data of an arbitrary number of views by analyzing the covariance tensor of the different views. TCCA aims to directly maximize the canonical correlation of multiple (more than two) views. Crucially, we prove that the main problem of multi-view canonical correlation maximization is equivalent to finding the best rank-1 approximation of the data covariance tensor, which can be solved efficiently using the well-known alternating least squares (ALS) algorithm. As a consequence, the high order correlation information contained in the different views is explored and thus a more reliable common subspace shared by all features can be obtained. In addition, a non-linear extension of TCCA is presented. Experiments on various challenge tasks, including large scale biometric structure prediction, internet advertisement classification, and web image annotation, demonstrate the effectiveness of the proposed method

    Multi-modal curriculum learning for semi-supervised image classification

    Get PDF
    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets
    corecore