48 research outputs found

    Finding Hexahedrizations for Small Quadrangulations of the Sphere

    Full text link
    This paper tackles the challenging problem of constrained hexahedral meshing. An algorithm is introduced to build combinatorial hexahedral meshes whose boundary facets exactly match a given quadrangulation of the topological sphere. This algorithm is the first practical solution to the problem. It is able to compute small hexahedral meshes of quadrangulations for which the previously known best solutions could only be built by hand or contained thousands of hexahedra. These challenging quadrangulations include the boundaries of transition templates that are critical for the success of general hexahedral meshing algorithms. The algorithm proposed in this paper is dedicated to building combinatorial hexahedral meshes of small quadrangulations and ignores the geometrical problem. The key idea of the method is to exploit the equivalence between quad flips in the boundary and the insertion of hexahedra glued to this boundary. The tree of all sequences of flipping operations is explored, searching for a path that transforms the input quadrangulation Q into a new quadrangulation for which a hexahedral mesh is known. When a small hexahedral mesh exists, a sequence transforming Q into the boundary of a cube is found; otherwise, a set of pre-computed hexahedral meshes is used. A novel approach to deal with the large number of problem symmetries is proposed. Combined with an efficient backtracking search, it allows small shellable hexahedral meshes to be found for all even quadrangulations with up to 20 quadrangles. All 54,943 such quadrangulations were meshed using no more than 72 hexahedra. This algorithm is also used to find a construction to fill arbitrary domains, thereby proving that any ball-shaped domain bounded by n quadrangles can be meshed with no more than 78 n hexahedra. This very significantly lowers the previous upper bound of 5396 n.Comment: Accepted for SIGGRAPH 201

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    There is no triangulation of the torus with vertex degrees 5, 6, ..., 6, 7 and related results: Geometric proofs for combinatorial theorems

    Full text link
    There is no 5,7-triangulation of the torus, that is, no triangulation with exactly two exceptional vertices, of degree 5 and 7. Similarly, there is no 3,5-quadrangulation. The vertices of a 2,4-hexangulation of the torus cannot be bicolored. Similar statements hold for 4,8-triangulations and 2,6-quadrangulations. We prove these results, of which the first two are known and the others seem to be new, as corollaries of a theorem on the holonomy group of a euclidean cone metric on the torus with just two cone points. We provide two proofs of this theorem: One argument is metric in nature, the other relies on the induced conformal structure and proceeds by invoking the residue theorem. Similar methods can be used to prove a theorem of Dress on infinite triangulations of the plane with exactly two irregular vertices. The non-existence results for torus decompositions provide infinite families of graphs which cannot be embedded in the torus.Comment: 14 pages, 11 figures, only minor changes from first version, to appear in Geometriae Dedicat

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    Surface design based upon a combined mesh

    Get PDF
    In this talk, we consider the problem of surface design based upon a mesh that may contain triangu-lar and quadrangular domains. Our goal is to investigate the cases when a combined mesh occurs more preferable for bivariate data interpolation than a pure triangulation

    Compatible 4-Holes in Point Sets

    Full text link
    Counting interior-disjoint empty convex polygons in a point set is a typical Erd\H{o}s-Szekeres-type problem. We study this problem for 4-gons. Let PP be a set of nn points in the plane and in general position. A subset QQ of PP, with four points, is called a 44-hole in PP if QQ is in convex position and its convex hull does not contain any point of PP in its interior. Two 4-holes in PP are compatible if their interiors are disjoint. We show that PP contains at least ⌊5n/11⌋−1\lfloor 5n/11\rfloor {-} 1 pairwise compatible 4-holes. This improves the lower bound of 2⌊(n−2)/5⌋2\lfloor(n-2)/5\rfloor which is implied by a result of Sakai and Urrutia (2007).Comment: 17 page
    corecore