3,989 research outputs found

    Fault-Tolerant Aggregation: Flow-Updating Meets Mass-Distribution

    Get PDF
    Flow-Updating (FU) is a fault-tolerant technique that has proved to be efficient in practice for the distributed computation of aggregate functions in communication networks where individual processors do not have access to global information. Previous distributed aggregation protocols, based on repeated sharing of input values (or mass) among processors, sometimes called Mass-Distribution (MD) protocols, are not resilient to communication failures (or message loss) because such failures yield a loss of mass. In this paper, we present a protocol which we call Mass-Distribution with Flow-Updating (MDFU). We obtain MDFU by applying FU techniques to classic MD. We analyze the convergence time of MDFU showing that stochastic message loss produces low overhead. This is the first convergence proof of an FU-based algorithm. We evaluate MDFU experimentally, comparing it with previous MD and FU protocols, and verifying the behavior predicted by the analysis. Finally, given that MDFU incurs a fixed deviation proportional to the message-loss rate, we adjust the accuracy of MDFU heuristically in a new protocol called MDFU with Linear Prediction (MDFU-LP). The evaluation shows that both MDFU and MDFU-LP behave very well in practice, even under high rates of message loss and even changing the input values dynamically.Comment: 18 pages, 5 figures, To appear in OPODIS 201

    A group membership algorithm with a practical specification

    Get PDF
    Presents a solvable specification and gives an algorithm for the group membership problem in asynchronous systems with crash failures. Our specification requires processes to maintain a consistent history in their sequences of views. This allows processes to order failures and recoveries in time and simplifies the programming of high level applications. Previous work has proven that the group membership problem cannot be solved in asynchronous systems with crash failures. We circumvent this impossibility result building a weaker, yet nontrivial specification. We show that our solution is an improvement upon previous attempts to solve this problem using a weaker specification. We also relate our solution to other methods and give a classification of progress properties that can be achieved under different models
    corecore