19,225 research outputs found

    Algorithms for Combinatorial Systems: Well-Founded Systems and Newton Iterations

    Get PDF
    We consider systems of recursively defined combinatorial structures. We give algorithms checking that these systems are well founded, computing generating series and providing numerical values. Our framework is an articulation of the constructible classes of Flajolet and Sedgewick with Joyal's species theory. We extend the implicit species theorem to structures of size zero. A quadratic iterative Newton method is shown to solve well-founded systems combinatorially. From there, truncations of the corresponding generating series are obtained in quasi-optimal complexity. This iteration transfers to a numerical scheme that converges unconditionally to the values of the generating series inside their disk of convergence. These results provide important subroutines in random generation. Finally, the approach is extended to combinatorial differential systems.Comment: 61 page

    Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure

    Full text link
    The numerical solution of partial differential equations on high-dimensional domains gives rise to computationally challenging linear systems. When using standard discretization techniques, the size of the linear system grows exponentially with the number of dimensions, making the use of classic iterative solvers infeasible. During the last few years, low-rank tensor approaches have been developed that allow to mitigate this curse of dimensionality by exploiting the underlying structure of the linear operator. In this work, we focus on tensors represented in the Tucker and tensor train formats. We propose two preconditioned gradient methods on the corresponding low-rank tensor manifolds: A Riemannian version of the preconditioned Richardson method as well as an approximate Newton scheme based on the Riemannian Hessian. For the latter, considerable attention is given to the efficient solution of the resulting Newton equation. In numerical experiments, we compare the efficiency of our Riemannian algorithms with other established tensor-based approaches such as a truncated preconditioned Richardson method and the alternating linear scheme. The results show that our approximate Riemannian Newton scheme is significantly faster in cases when the application of the linear operator is expensive.Comment: 24 pages, 8 figure
    • …
    corecore