2 research outputs found

    Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models

    Full text link
    We study the convergence rate of stochastic optimization of exact (NP-hard) objectives, for which only biased estimates of the gradient are available. We motivate this problem in the context of learning the structure and parameters of Ising models. We first provide a convergence-rate analysis of deterministic errors for forward-backward splitting (FBS). We then extend our analysis to biased stochastic errors, by first characterizing a family of samplers and providing a high probability bound that allows understanding not only FBS, but also proximal gradient (PG) methods. We derive some interesting conclusions: FBS requires only a logarithmically increasing number of random samples in order to converge (although at a very low rate); the required number of random samples is the same for the deterministic and the biased stochastic setting for FBS and basic PG; accelerated PG is not guaranteed to converge in the biased stochastic setting.Comment: ICML201

    Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error

    Full text link
    We study the L1L_1-regularized maximum likelihood estimator/estimation (MLE) problem for discrete Markov random fields (MRFs), where efficient and scalable learning requires both sparse regularization and approximate inference. To address these challenges, we consider a stochastic learning framework called stochastic proximal gradient (SPG; Honorio 2012a, Atchade et al. 2014,Miasojedow and Rejchel 2016). SPG is an inexact proximal gradient algorithm [Schmidtet al., 2011], whose inexactness stems from the stochastic oracle (Gibbs sampling) for gradient approximation - exact gradient evaluation is infeasible in general due to the NP-hard inference problem for discrete MRFs [Koller and Friedman, 2009]. Theoretically, we provide novel verifiable bounds to inspect and control the quality of gradient approximation. Empirically, we propose the tighten asymptotically (TAY) learning strategy based on the verifiable bounds to boost the performance of SPG
    corecore