187 research outputs found

    Multi-non-binary turbo codes

    Get PDF
    International audienceThis paper presents a new family of turbo codes called multi-non-binary turbo codes (MNBTCs) that generalizes the concept of turbo codes to multi-non-binary (MNB) parallel concatenated convolutional codes (PCCC). An MNBTC incorporates, as component encoders, recursive and systematic multi-non-binary convolutional encoders. The more compact data structure for these encoders confers some advantages on MNBTCs over other types of turbo codes, such as better asymptotic behavior, better convergence, and reduced latency. This paper presents in detail the structure and operation of an MNBTC: MNB encoding, trellis termination, Max-Log-MAP decoding adapted to the MNB case. It also shows an example of MNBTC whose performance is compared with the state-of-the-art turbo code adopted in the DVB-RCS2 standard

    Improve the Usability of Polar Codes: Code Construction, Performance Enhancement and Configurable Hardware

    Full text link
    Error-correcting codes (ECC) have been widely used for forward error correction (FEC) in modern communication systems to dramatically reduce the signal-to-noise ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar codes have attracted much interest because of their capacity-achieving potential, efficient encoder and decoder implementation, and flexible architecture design space.This dissertation is aimed at improving the usability of polar codes by providing a practical code design method, new approaches to improve the performance of polar code, and a configurable hardware design that adapts to various specifications. State-of-the-art polar codes are used to achieve extremely low error rates. In this work, high-performance FPGA is used in prototyping polar decoders to catch rare-case errors for error-correcting performance verification and error analysis. To discover the polarization characteristics and error patterns of polar codes, an FPGA emulation platform for belief-propagation (BP) decoding is built by a semi-automated construction flow. The FPGA-based emulation achieves significant speedup in large-scale experiments involving trillions of data frames. The platform is a key enabler of this work. The frozen set selection of polar codes, known as bit selection, is critical to the error-correcting performance of polar codes. A simulation-based in-order bit selection method is developed to evaluate the error rate of each bit using Monte Carlo simulations. The frozen set is selected based on the bit reliability ranking. The resulting code construction exhibits up to 1 dB coding gain with respect to the conventional bit selection. To further improve the coding gain of BP decoder for low-error-rate applications, the decoding error mechanisms are studied and analyzed, and the errors are classified based on their distinct signatures. Error detection is enabled by low-cost CRC concatenation, and post-processing algorithms targeting at each type of the error is designed to mitigate the vast majority of the decoding errors. The post-processor incurs only a small implementation overhead, but it provides more than an order of magnitude improvement of the error-correcting performance. The regularity of the BP decoder structure offers many hardware architecture choices. Silicon area, power consumption, throughput and latency can be traded to reach the optimal design points for practical use cases. A comprehensive design space exploration reveals several practical architectures at different design points. The scalability of each architecture is also evaluated based on the implementation candidates. For dynamic communication channels, such as wireless channels in the upcoming 5G applications, multiple codes of different lengths and code rates are needed to t varying channel conditions. To minimize implementation cost, a universal decoder architecture is proposed to support multiple codes through hardware reuse. A 40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various communication environments and service requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140817/1/shuangsh_1.pd

    Faulty Successive Cancellation Decoding of Polar Codes for the Binary Erasure Channel

    Full text link
    In this paper, faulty successive cancellation decoding of polar codes for the binary erasure channel is studied. To this end, a simple erasure-based fault model is introduced to represent errors in the decoder and it is shown that, under this model, polarization does not happen, meaning that fully reliable communication is not possible at any rate. Furthermore, a lower bound on the frame error rate of polar codes under faulty SC decoding is provided, which is then used, along with a well-known upper bound, in order to choose a blocklength that minimizes the erasure probability under faulty decoding. Finally, an unequal error protection scheme that can re-enable asymptotically erasure-free transmission at a small rate loss and by protecting only a constant fraction of the decoder is proposed. The same scheme is also shown to significantly improve the finite-length performance of the faulty successive cancellation decoder by protecting as little as 1.5% of the decoder.Comment: Accepted for publications in the IEEE Transactions on Communication

    Fully Parallel Stochastic LDPC Decoders

    Full text link

    New Algorithms for High-Throughput Decoding with Low-Density Parity-Check Codes using Fixed-Point SIMD Processors

    Get PDF
    Most digital signal processors contain one or more functional units with a single-instruction, multiple-data architecture that supports saturating fixed-point arithmetic with two or more options for the arithmetic precision. The processors designed for the highest performance contain many such functional units connected through an on-chip network. The selection of the arithmetic precision provides a trade-off between the task-level throughput and the quality of the output of many signal-processing algorithms, and utilization of the interconnection network during execution of the algorithm introduces a latency that can also limit the algorithm\u27s throughput. In this dissertation, we consider the turbo-decoding message-passing algorithm for iterative decoding of low-density parity-check codes and investigate its performance in parallel execution on a processor of interconnected functional units employing fast, low-precision fixed-point arithmetic. It is shown that the frequent occurrence of saturation when 8-bit signed arithmetic is used severely degrades the performance of the algorithm compared with decoding using higher-precision arithmetic. A technique of limiting the magnitude of certain intermediate variables of the algorithm, the extrinsic values, is proposed and shown to eliminate most occurrences of saturation, resulting in performance with 8-bit decoding nearly equal to that achieved with higher-precision decoding. We show that the interconnection latency can have a significant detrimental effect of the throughput of the turbo-decoding message-passing algorithm, which is illustrated for a type of high-performance digital signal processor known as a stream processor. Two alternatives to the standard schedule of message-passing and parity-check operations are proposed for the algorithm. Both alternatives markedly reduce the interconnection latency, and both result in substantially greater throughput than the standard schedule with no increase in the probability of error

    Error-Floors of the 802.3an LDPC Code for Noise Assisted Decoding

    Get PDF
    In digital communication, information is sent as bits, which is corrupted by the noise present in wired/wireless medium known as the channel. The Low Density Parity Check (LDPC) codes are a family of error correction codes used in communication systems to detect and correct erroneous data at the receiver. Data is encoded with error correction coding at the transmitter and decoded at the receiver. The Noisy Gradient Descent BitFlip (NGDBF) decoding algorithm is a new algorithm with excellent decoding performance with relatively low implementation requirements. This dissertation aims to characterize the performance of the NGDBF algorithm. A simple improvement over NGDBF called the Re-decoded NGDBF (R-NGDBF) is proposed to enhance the performance of NGDBF decoding algorithm. A general method to estimate the decoding parameters of NGDBF is presented. The estimated parameters are then verified in a hardware implementation of the decoder to validate the accuracy of the estimation technique
    • 

    corecore