96 research outputs found

    Artificial Brownian motors: Controlling transport on the nanoscale

    Full text link
    In systems possessing spatial or dynamical symmetry breaking, Brownian motion combined with symmetric external input signals, deterministic or random, alike, can assist directed motion of particles at the submicron scales. In such cases, one speaks of "Brownian motors". In this review the constructive role of Brownian motion is exemplified for various one-dimensional setups, mostly inspired by the cell molecular machinery: working principles and characteristics of stylized devices are discussed to show how fluctuations, either thermal or extrinsic, can be used to control diffusive particle transport. Recent experimental demonstrations of this concept are reviewed with particular attention to transport in artificial nanopores and optical traps, where single particle currents have been first measured. Much emphasis is given to two- and three-dimensional devices containing many interacting particles of one or more species; for this class of artificial motors, noise rectification results also from the interplay of particle Brownian motion and geometric constraints. Recently, selective control and optimization of the transport of interacting colloidal particles and magnetic vortices have been successfully achieved, thus leading to the new generation of microfluidic and superconducting devices presented hereby. Another area with promising potential for realization of artificial Brownian motors are microfluidic or granular set-ups.....Comment: 57 pages, 39 figures; submitted to Reviews Modern Physics, revised versio

    Quantum Thermodynamics

    Get PDF
    Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit, in non-equilibrium situations, and with the full inclusion of quantum effects. Fuelled by experimental advances and the potential of future nanoscale applications this research effort is pursued by scientists with different backgrounds, including statistical physics, many-body theory, mesoscopic physics and quantum information theory, who bring various tools and methods to the field. A multitude of theoretical questions are being addressed ranging from issues of thermalisation of quantum systems and various definitions of "work", to the efficiency and power of quantum engines. This overview provides a perspective on a selection of these current trends accessible to postgraduate students and researchers alike.Comment: 48 pages, improved and expanded several sections. Comments welcom

    Thermodynamics and synchronization in open quantum systems

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Atómica Molecular y Nuclear, leída el 11-07-2017Los efectos disipativos tienen profundas consecuencias en el comportamiento y las propiedades de los sistemas cuánticos [72]. La inevitable interacción con el entorno circundante, con el cual los sistemas intercambian continuamente información, energía, momento angular o materia, es la última responsable de los fenómenos de decoherencia y de la emergencia del comportamiento clásico [490, 614]. Sin embargo, existe un amplio régimen intermedio en el cual efectos disipativos y cuánticos coexisten, dando lugar a una amplia gama de ricos y sorprendentes fenómenos que apenas están empezando a ser comprendidos. Además, las innovadoras técnicas desarrolladas recientemente para controlar y manipular sistemas cuánticos en el laboratorio han hecho esta fenomenología accesible experimentalmente y potencialmente aplicable [244, 586]. En esta tesis exploraremos desde un punto de vista teórico algunas de las conexiones entre efectos disipativos y cuánticos en lo concerniente a dos principales aspectos: el comportamiento termodinámico de los sistemas cuánticos y la relación entre las correlaciones dinámicas y cuánticas compartidas por éstos. Las correlaciones cuánticas son una de las características más sorprendentes de la naturaleza y han atraído un notable interés desde la misma formulación de la teoría cuántica. La comprensión de los mecanismos subyacentes que generan, preservan, o destruyen estas correlaciones resulta de gran importancia a la hora de explorar la frontera cuántico-clásica [597], mientras que es esencial en el diseño de esquemas en los que la decoherencia pueda ser evitada en aplicaciones prácticas [35, 143, 562]. Por otra parte, otro tipo importante de correlaciones dinámicas de caracter más tradicionalmente clásico son los fenómenos de sincronización, que han sido estudiados en un amplio rango de sistemas físicos, químicos y biológicos [433]. La sincronización puede aparecer como un comportamiento espontáneo y cooperativo de diferentes unidades que oscilan y que, cuando se acoplan, adaptan sus ritmos a una frecuencia común. Este fenómeno de sincronización mutua ha sido considerado con profusión desde un punto de vista clásico [249, 263, 606], mientras que los rasgos genuinamente cuánticos de la sincronización estan empezando ahora a ser investigados...Dissipation effects have profound consequences in the behavior and properties of quantum systems. The unavoidable interaction with the surrounding environment, with whom systems continuously exchange information, energy, angular momentum or matter, is ultimately responsible of decoherence phenomena and the emergence of classical behavior. However, there exist a wide intermediate regime in which the interplay between dissipative and quantum effects gives rise to a plethora of rich and striking phenomena that has only started to be understood. In addition, the recent breakthrough techniques in controlling and manipulating quantum systems in the laboratory has made this phenomenology accessible in experiments and potentially applicable. In this thesis we aim to explore from a theoretical point of view some of the connections between dissipative and quantum effects. We focus on three main topics: the relation between dynamical and quantum correlations, the thermodynamical properties of fluctuations, and the performance of quantum thermal machines. First, we study the emergence of transient and asymptotic spontaneous synchronization induced by dissipation in harmonic quantum systems and its connections with quantum correlations. Our results show that synchronization may be used a witnesses for the slow decay or even the preservation of quantum discord in many situations of interest. Furthermore, we develop methods for engineering it in complex harmonic networks or selected clusters, where noiseless subsystems can be obtained by tuning one or few system parameters. Second, we explore the quantum versions of work and entropy production fluctuation relations. We derive a general fluctuation theorem valid for a broad class of open systems dynamics and discuss the meaning of the quantity fulfilling it. Importantly, our theorem overcomes the prototypical assumption of ideal thermal reservoirs. We also study the possibility of split entropy production in arbitrary quantum processes into adiabatic and non-adiabatic contributions, each of them fulfilling an independent fluctuation theorem. Contrary to the classical case, quantum effects may break the split, and we discuss the necessary conditions to enforce it. Our findings are illustrated in three relevant examples for quantum thermodynamics. Finally, we focus on the role quantum effects in the performance of quantum thermal machines. We analyze the case of an optimized quantum Otto cycle powered by a squeezed thermal reservoir. Our previous results allow us to characterize the many striking nonequilibrium features that arise, including work extraction from a single reservoir or multi-task regimes combining both refrigeration of a cold reservoir and work extraction at the same time. On the other hand, we also explore the role of the Hilbert space dimension in the performance of autonomous quantum thermal machines. Our results point that adding extra levels constitutes a thermodynamical resource. For the case of autonomous fridges, we further obtain a statement on the third law of thermodynamics in terms of their number of levels: reaching zero temperature requires an infinite Hilbert space dimension. The research results presented in this thesis are complemented with a broad introduction to the field of open quantum systems and quantum thermodynamics. There, we review the state of the art on these topics and the reader will find the main methods and tools used along the thesis.Depto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasTRUEunpu

    Quantum Engineering in Open Quantum Systems

    Get PDF
    The huge technological advancement achieved in the last years has allowed for the emergence of a new field of physics dubbed \u201cquantum engineering\u201d: with this term people refer to a wide range of topics, from planning and building physical systems for specific tasks to developing algorithms to control those systems, from ways to create specific quantum states to new theoretical tools to describe and plan new physical systems. As the field of quantum engineering covers many topics in physics, this is reflected in the community interested in it, ranging from quantum optics theorists to solid state experimentalists. This also includes the possibility, and sometimes the necessity, for a scientist willing to enter the field to study very different problems, as it happened for the material in this thesis, where at least two main topics are covered. One of them is the study of open quantum systems, more specifically in the context of collisional model and cascade networks. The latter are networks of quantum systems interacting through the interaction with a common environment with unidirectional, i.e. chiral, propagation of the signal. Thanks to the chirality of the environment it is possible to obtain non symmetrical couplings between the quantum systems composing the network, opening the way to engineer the steady state of the system. The tool used to derive master equation describing dynamics and properties of such systems is the one of collisional models: these models are nowadays extensively used in a wide range of topics concerning open quantum systems, from the description of both Markovian and non Markovian dynamics, to quantum optics and quantum thermodynamics. In collisional models the environment is depicted as a collection of smaller systems, dubbed ancillas, which interact in a collisional fashion with the quantum system under examination. This way of describing open systems dynamics leads to a discrete master equation on which it is then possible to enforce a continuous time limit. Among the advantages provided by such an approach there is the simplicity with which is possible to switch from a Markovian to a non-Markovian dynamics and the possibility of keeping track of the environmental degrees of freedom. The last feature cited is the one exploited in this thesis when studying a quantum system thermalizing through the interaction with a thermal bath: having at disposal the environmental state at each discrete step of the thermalization process, it is possible to compute the thermodynamic functionals relative to the environment. Specifically, by computing the quantum mutual information between the system and the environment, it is possible to show that the final joint state reached by the system and the environment is a factorized state. The other part of this thesis focuses instead on quantum state engineering by potential engineering. By appropriately engineering a potential profile, it is possible to obtain a class of quantum states, dubbed stretchable, which have the property of having a flat wave function in some regions, somehow analogously to what happens in photonic metamaterials: in this materials, where either the permittivity or the permeability is zero, the temporal and spatial variation of the electric field are decoupled, leading to the possibility of having a stretched wave with both large frequency and large wavelength. Finally, in this thesis it is shown how, by properly engineering a spatially varying potential landscape, it is possible to attach a geometric phase to the quantum state of a traveling wave. More specifically, as the confining potential of a traveling wave varies along a closed loop in parameters space, it is possible to implement an operation, usually called holonomy, which attaches a geometric phase to the state, analogously to what happens in the Berry phase phenomenon for a time dependent Hamiltonian

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    Quantum Darwinism and Friends

    Get PDF
    In honor of Wojciech Zurek’s 70th birthday, this Special Issue is dedicated to recent advances in our understanding the emergence of classical reality, and pays tribute to Zurek’s seminal contributions to our understanding of the Universe. To this end, “Quantum Darwinism and Friends” collects articles that make sense of the apparent chasm between quantum weirdness and classical perception, and provides a snapshot of this fundamental, exciting, and vivid field of theoretical physics
    corecore