44 research outputs found

    Recoverable DTN Routing based on a Relay of Cyclic Message-Ferries on a MSQ Network

    Get PDF
    An interrelation between a topological design of network and efficient algorithm on it is important for its applications to communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle cycles and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.Comment: 6 pages, 12 figures, The 3rd Workshop on the FoCAS(Fundamentals of Collective Adaptive Systems) at The 9th IEEE International Conference on SASO(Self-Adaptive and Self-Organizing systems), Boston, USA, Sept.21, 201

    Society Dissemination Based Propagation For Data Spreading In Mobiles Social Networks

    Get PDF
    In mobile ad hoc networks, nodes are dynamically changing their locations. MOBILE ad hoc networks (MANETs) consist of a collection of mobile nodes which can move freely. These nodes can be dynamically self-organized into arbitrary topology networks without a fixed infrastructure. A mobile ad hoc network consists of wireless hosts that may move often. Movement of hosts results in a change in routes, requiring some mechanism for determining new routes. Several routing protocols have already been proposed for ad hoc networks. MSNets can be viewed as a kind of socially aware Delay/ Disruption Tolerant Networks (DTNs). Thanks to the popularization of smart phones (e.g., iPhone, Nokia N95,and Blackberry), MSNets have begun to attract more attention. However, intermittent and uncertain network connectivity make data dissemination in MSNets a challenging problem. Broadcasting is the operation of sending data from a source user to all other users in the network. Most of the envisioned services (ranging from safety applications to traffic management) rely on broadcasting data to the users inside a certain area of interest. For example, location-based services (product prices, tourist points of interest, etc.) can be advertised from salesmen to near-by users. In this paper The objective is to broadcast data from a superuser to other users in the network. There are two main challenges under this paradigm, namely 1) how to represent and characterize user mobility in realistic MSNets; 2) given the knowledge of regular users' movements, how to design an efficient superuser route to broadcast data actively. We first explore several realistic data sets to reveal both geographic and social regularities of human mobility, and further propose the concepts of geocommunity and geocentrality into MSNet analysis

    Ferry–Based Directional Forwarding Mechanism for Improved Network Life-Time in Cluster-Based Wireless Sensor Network

    Get PDF
    Considerable energy saving can be achieved with mobility-based wireless sensor networks (WSN's), where a mobile node (ferry) visits sensing nodes in a network to collect sensed data. However, the critical issues of such WSN's are limited networks lifetime and high data latency, these critical issues are due to the slow mobility and relatively long route distance for ferries to collect and forward data to the sink. Incorporating ferries in WSNs eliminates the need for multi-hop forwarding of data, and as a result, reduce energy consumption at sensing nodes. In this paper, we introduce the One Hop Cluster-Head Algorithm (OHCH), where a subset of ferries serve as cluster heads (CH), travel between nodes with short distance mobility, collect data originated from sources, and transfer it to the sink with minimum hop count possible, this approach can achieve more balance between network energy saving and data collection delay, also, it is an efficient design to combine between ferries and noise

    Data Delivery in Delay Tolerant Networks: A Survey

    Get PDF
    corecore