27,969 research outputs found

    Opinion-Based Centrality in Multiplex Networks: A Convex Optimization Approach

    Full text link
    Most people simultaneously belong to several distinct social networks, in which their relations can be different. They have opinions about certain topics, which they share and spread on these networks, and are influenced by the opinions of other persons. In this paper, we build upon this observation to propose a new nodal centrality measure for multiplex networks. Our measure, called Opinion centrality, is based on a stochastic model representing opinion propagation dynamics in such a network. We formulate an optimization problem consisting in maximizing the opinion of the whole network when controlling an external influence able to affect each node individually. We find a mathematical closed form of this problem, and use its solution to derive our centrality measure. According to the opinion centrality, the more a node is worth investing external influence, and the more it is central. We perform an empirical study of the proposed centrality over a toy network, as well as a collection of real-world networks. Our measure is generally negatively correlated with existing multiplex centrality measures, and highlights different types of nodes, accordingly to its definition

    Effects of Time Horizons on Influence Maximization in the Voter Dynamics

    Full text link
    In this paper we analyze influence maximization in the voter model with an active strategic and a passive influencing party in non-stationary settings. We thus explore the dependence of optimal influence allocation on the time horizons of the strategic influencer. We find that on undirected heterogeneous networks, for short time horizons, influence is maximized when targeting low-degree nodes, while for long time horizons influence maximization is achieved when controlling hub nodes. Furthermore, we show that for short and intermediate time scales influence maximization can exploit knowledge of (transient) opinion configurations. More in detail, we find two rules. First, nodes with states differing from the strategic influencer's goal should be targeted. Second, if only few nodes are initially aligned with the strategic influencer, nodes subject to opposing influence should be avoided, but when many nodes are aligned, an optimal influencer should shadow opposing influence.Comment: 22 page
    corecore