655 research outputs found

    Deep Learning for Free-Hand Sketch: A Survey

    Get PDF
    Free-hand sketches are highly illustrative, and have been widely used by humans to depict objects or stories from ancient times to the present. The recent prevalence of touchscreen devices has made sketch creation a much easier task than ever and consequently made sketch-oriented applications increasingly popular. The progress of deep learning has immensely benefited free-hand sketch research and applications. This paper presents a comprehensive survey of the deep learning techniques oriented at free-hand sketch data, and the applications that they enable. The main contents of this survey include: (i) A discussion of the intrinsic traits and unique challenges of free-hand sketch, to highlight the essential differences between sketch data and other data modalities, e.g., natural photos. (ii) A review of the developments of free-hand sketch research in the deep learning era, by surveying existing datasets, research topics, and the state-of-the-art methods through a detailed taxonomy and experimental evaluation. (iii) Promotion of future work via a discussion of bottlenecks, open problems, and potential research directions for the community.Comment: This paper is accepted by IEEE TPAM

    INSIDE: Steering Spatial Attention with Non-Imaging Information in CNNs

    Get PDF
    We consider the problem of integrating non-imaging information into segmentation networks to improve performance. Conditioning layers such as FiLM provide the means to selectively amplify or suppress the contribution of different feature maps in a linear fashion. However, spatial dependency is difficult to learn within a convolutional paradigm. In this paper, we propose a mechanism to allow for spatial localisation conditioned on non-imaging information, using a feature-wise attention mechanism comprising a differentiable parametrised function (e.g. Gaussian), prior to applying the feature-wise modulation. We name our method INstance modulation with SpatIal DEpendency (INSIDE). The conditioning information might comprise any factors that relate to spatial or spatio-temporal information such as lesion location, size, and cardiac cycle phase. Our method can be trained end-to-end and does not require additional supervision. We evaluate the method on two datasets: a new CLEVR-Seg dataset where we segment objects based on location, and the ACDC dataset conditioned on cardiac phase and slice location within the volume. Code and the CLEVR-Seg dataset are available at https://github.com/jacenkow/inside.Comment: Accepted at International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 202
    • …
    corecore