106 research outputs found

    Controlling Perceptual Factors in Neural Style Transfer

    Full text link
    Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable the combination of style information from multiple sources to generate new, perceptually appealing styles from existing ones. We also describe how these methods can be used to more efficiently produce large size, high-quality stylisation. Finally we show how the introduced control measures can be applied in recent methods for Fast Neural Style Transfer.Comment: Accepted at CVPR201

    Portrait Stylization: Artistic Style Transfer with Auxiliary Networks for Human Face Stylization

    Full text link
    Today's image style transfer methods have difficulty retaining humans face individual features after the whole stylizing process. This occurs because the features like face geometry and people's expressions are not captured by the general-purpose image classifiers like the VGG-19 pre-trained models. This paper proposes the use of embeddings from an auxiliary pre-trained face recognition model to encourage the algorithm to propagate human face features from the content image to the final stylized result.Comment: 12 pages, 12 figure

    MindSpaces:Art-driven Adaptive Outdoors and Indoors Design

    Get PDF
    MindSpaces provides solutions for creating functionally and emotionally appealing architectural designs in urban spaces. Social media services, physiological sensing devices and video cameras provide data from sensing environments. State-of-the-Art technology including VR, 3D design tools, emotion extraction, visual behaviour analysis, and textual analysis will be incorporated in MindSpaces platform for analysing data and adapting the design of spaces.</p

    Diversified Texture Synthesis with Feed-forward Networks

    Full text link
    Recent progresses on deep discriminative and generative modeling have shown promising results on texture synthesis. However, existing feed-forward based methods trade off generality for efficiency, which suffer from many issues, such as shortage of generality (i.e., build one network per texture), lack of diversity (i.e., always produce visually identical output) and suboptimality (i.e., generate less satisfying visual effects). In this work, we focus on solving these issues for improved texture synthesis. We propose a deep generative feed-forward network which enables efficient synthesis of multiple textures within one single network and meaningful interpolation between them. Meanwhile, a suite of important techniques are introduced to achieve better convergence and diversity. With extensive experiments, we demonstrate the effectiveness of the proposed model and techniques for synthesizing a large number of textures and show its applications with the stylization.Comment: accepted by CVPR201
    • …
    corecore