2,136 research outputs found

    CLID: Controlled-Length Image Descriptions with Limited Data

    Full text link
    Controllable image captioning models generate human-like image descriptions, enabling some kind of control over the generated captions. This paper focuses on controlling the caption length, i.e. a short and concise description or a long and detailed one. Since existing image captioning datasets contain mostly short captions, generating long captions is challenging. To address the shortage of long training examples, we propose to enrich the dataset with varying-length self-generated captions. These, however, might be of varying quality and are thus unsuitable for conventional training. We introduce a novel training strategy that selects the data points to be used at different times during the training. Our method dramatically improves the length-control abilities, while exhibiting SoTA performance in terms of caption quality. Our approach is general and is shown to be applicable also to paragraph generation

    Evaluation of Automatic Video Captioning Using Direct Assessment

    Full text link
    We present Direct Assessment, a method for manually assessing the quality of automatically-generated captions for video. Evaluating the accuracy of video captions is particularly difficult because for any given video clip there is no definitive ground truth or correct answer against which to measure. Automatic metrics for comparing automatic video captions against a manual caption such as BLEU and METEOR, drawn from techniques used in evaluating machine translation, were used in the TRECVid video captioning task in 2016 but these are shown to have weaknesses. The work presented here brings human assessment into the evaluation by crowdsourcing how well a caption describes a video. We automatically degrade the quality of some sample captions which are assessed manually and from this we are able to rate the quality of the human assessors, a factor we take into account in the evaluation. Using data from the TRECVid video-to-text task in 2016, we show how our direct assessment method is replicable and robust and should scale to where there many caption-generation techniques to be evaluated.Comment: 26 pages, 8 figure

    From Deterministic to Generative: Multi-Modal Stochastic RNNs for Video Captioning

    Full text link
    Video captioning in essential is a complex natural process, which is affected by various uncertainties stemming from video content, subjective judgment, etc. In this paper we build on the recent progress in using encoder-decoder framework for video captioning and address what we find to be a critical deficiency of the existing methods, that most of the decoders propagate deterministic hidden states. Such complex uncertainty cannot be modeled efficiently by the deterministic models. In this paper, we propose a generative approach, referred to as multi-modal stochastic RNNs networks (MS-RNN), which models the uncertainty observed in the data using latent stochastic variables. Therefore, MS-RNN can improve the performance of video captioning, and generate multiple sentences to describe a video considering different random factors. Specifically, a multi-modal LSTM (M-LSTM) is first proposed to interact with both visual and textual features to capture a high-level representation. Then, a backward stochastic LSTM (S-LSTM) is proposed to support uncertainty propagation by introducing latent variables. Experimental results on the challenging datasets MSVD and MSR-VTT show that our proposed MS-RNN approach outperforms the state-of-the-art video captioning benchmarks
    • …
    corecore