4,099 research outputs found

    Controlling rigid formations of mobile agents under inconsistent measurements

    Get PDF
    Despite the great success of using gradient-based controllers to stabilize rigid formations of autonomous agents in the past years, surprising yet intriguing undesirable collective motions have been reported recently when inconsistent measurements are used in the agents' local controllers. To make the existing gradient control robust against such measurement inconsistency, we exploit local estimators following the well known internal model principle for robust output regulation control. The new estimator-based gradient control is still distributed in nature and can be constructed systematically even when the number of agents in a rigid formation grows. We prove rigorously that the proposed control is able to guarantee exponential convergence and then demonstrate through robotic experiments and computer simulations that the reported inconsistency-induced orbits of collective movements are effectively eliminated.Comment: 10 page

    Distributed scaling control of rigid formations

    Get PDF
    Recently it has been reported that biased range-measurements among neighboring agents in the gradient distance-based formation control can lead to predictable collective motion. In this paper we take advantage of this effect and by introducing distributed parameters to the prescribed inter-distances we are able to manipulate the steady-state motion of the formation. This manipulation is in the form of inducing simultaneously the combination of constant translational and angular velocities and a controlled scaling of the rigid formation. While the computation of the distributed parameters for the translational and angular velocities is based on the well-known graph rigidity theory, the parameters responsible for the scaling are based on some recent findings in bearing rigidity theory. We carry out the stability analysis of the modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year 201

    Mobile Formation Coordination and Tracking Control for Multiple Non-holonomic Vehicles

    Full text link
    This paper addresses forward motion control for trajectory tracking and mobile formation coordination for a group of non-holonomic vehicles on SE(2). Firstly, by constructing an intermediate attitude variable which involves vehicles' position information and desired attitude, the translational and rotational control inputs are designed in two stages to solve the trajectory tracking problem. Secondly, the coordination relationships of relative positions and headings are explored thoroughly for a group of non-holonomic vehicles to maintain a mobile formation with rigid body motion constraints. We prove that, except for the cases of parallel formation and translational straight line formation, a mobile formation with strict rigid-body motion can be achieved if and only if the ratios of linear speed to angular speed for each individual vehicle are constants. Motion properties for mobile formation with weak rigid-body motion are also demonstrated. Thereafter, based on the proposed trajectory tracking approach, a distributed mobile formation control law is designed under a directed tree graph. The performance of the proposed controllers is validated by both numerical simulations and experiments

    Circular formation control of fixed-wing UAVs with constant speeds

    Full text link
    In this paper we propose an algorithm for stabilizing circular formations of fixed-wing UAVs with constant speeds. The algorithm is based on the idea of tracking circles with different radii in order to control the inter-vehicle phases with respect to a target circumference. We prove that the desired equilibrium is exponentially stable and thanks to the guidance vector field that guides the vehicles, the algorithm can be extended to other closed trajectories. One of the main advantages of this approach is that the algorithm guarantees the confinement of the team in a specific area, even when communications or sensing among vehicles are lost. We show the effectiveness of the algorithm with an actual formation flight of three aircraft. The algorithm is ready to use for the general public in the open-source Paparazzi autopilot.Comment: 6 pages, submitted to IROS 201
    • …
    corecore