5 research outputs found

    Can Boosting with SVM as Week Learners Help?

    Full text link
    Object recognition in images involves identifying objects with partial occlusions, viewpoint changes, varying illumination, cluttered backgrounds. Recent work in object recognition uses machine learning techniques SVM-KNN, Local Ensemble Kernel Learning, Multiple Kernel Learning. In this paper, we want to utilize SVM as week learners in AdaBoost. Experiments are done with classifiers like near- est neighbor, k-nearest neighbor, Support vector machines, Local learning(SVM- KNN) and AdaBoost. Models use Scale-Invariant descriptors and Pyramid his- togram of gradient descriptors. AdaBoost is trained with set of week classifier as SVMs, each with kernel distance function on different descriptors. Results shows AdaBoost with SVM outperform other methods for Object Categorization dataset.Comment: Work done in 200

    System for Filtering Messages on Social Media Content

    Full text link
    The social networking era has left us with little privacy. The details of the social network users are published on Social Networking sites. Vulnerability has reached new heights due to the overpowering effects of social networking. The sites like Facebook, Twitter are having a huge set of users who publish their files, comments, messages in other users walls. These messages and comments could be of any nature. Even friends could post a comment that would harm a persons integrity. Thus there has to be a system which will monitor the messages and comments that are posted on the walls. If the messages are found to be neutral (does not have any harmful content), then it can be published. If the messages are found to have non-neutral content in them, then these messages would be blocked by the social network manager. The messages that are non-neutral would be of sexual, offensive, hatred, pun intended nature. Thus the social network manager can classify content as neutral and non-neutral and notify the user if there seems to be messages of non-neutral behavior

    Finding Optimal Combination of Kernels using Genetic Programming

    Full text link
    In Computer Vision, problem of identifying or classifying the objects present in an image is called Object Categorization. It is a challenging problem, especially when the images have clutter background, occlusions or different lighting conditions. Many vision features have been proposed which aid object categorization even in such adverse conditions. Past research has shown that, employing multiple features rather than any single features leads to better recognition. Multiple Kernel Learning (MKL) framework has been developed for learning an optimal combination of features for object categorization. Existing MKL methods use linear combination of base kernels which may not be optimal for object categorization. Real-world object categorization may need to consider complex combination of kernels(non-linear) and not only linear combination. Evolving non-linear functions of base kernels using Genetic Programming is proposed in this report. Experiment results show that non-kernel generated using genetic programming gives good accuracy as compared to linear combination of kernels

    Accessing accurate documents by mining auxiliary document information

    Full text link
    Earlier techniques of text mining included algorithms like k-means, Naive Bayes, SVM which classify and cluster the text document for mining relevant information about the documents. The need for improving the mining techniques has us searching for techniques using the available algorithms. This paper proposes one technique which uses the auxiliary information that is present inside the text documents to improve the mining. This auxiliary information can be a description to the content. This information can be either useful or completely useless for mining. The user should assess the worth of the auxiliary information before considering this technique for text mining. In this paper, a combination of classical clustering algorithms is used to mine the datasets. The algorithm runs in two stages which carry out mining at different levels of abstraction. The clustered documents would then be classified based on the necessary groups. The proposed technique is aimed at improved results of document clustering

    Thesis: Multiple Kernel Learning for Object Categorization

    Full text link
    Object Categorization is a challenging problem, especially when the images have clutter background, occlusions or different lighting conditions. In the past, many descriptors have been proposed which aid object categorization even in such adverse conditions. Each descriptor has its own merits and de-merits. Some descriptors are invariant to transformations while the others are more discriminative. Past research has shown that, employing multiple descriptors rather than any single descriptor leads to better recognition. The problem of learning the optimal combination of the available descriptors for a particular classification task is studied. Multiple Kernel Learning (MKL) framework has been developed for learning an optimal combination of descriptors for object categorization. Existing MKL formulations often employ block l-1 norm regularization which is equivalent to selecting a single kernel from a library of kernels. Since essentially a single descriptor is selected, the existing formulations maybe sub- optimal for object categorization. A MKL formulation based on block l-infinity norm regularization has been developed, which chooses an optimal combination of kernels as opposed to selecting a single kernel. A Composite Multiple Kernel Learning(CKL) formulation based on mixed l-infinity and l-1 norm regularization has been developed. These formulations end in Second Order Cone Programs(SOCP). Other efficient alter- native algorithms for these formulation have been implemented. Empirical results on benchmark datasets show significant improvement using these new MKL formulations
    corecore