41 research outputs found

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Get PDF
    We develop a method for the stabilization of mechanical systems with symmetry based on the technique of controlled Lagrangians. The procedure involves making structured modifications to the Lagrangian for the uncontrolled system, thereby constructing the controlled Lagrangian. The Euler-Lagrange equations derived from the controlled Lagrangian describe the closed-loop system, where new terms in these equations are identified with control forces. Since the controlled system is Lagrangian by construction, energy methods can be used to find control gains that yield closed-loop stability. We use kinetic shaping to preserve symmetry and only stabilize systems module the symmetry group. The procedure is demonstrated for several underactuated balance problems, including the stabilization of an inverted planar pendulum on a cart moving on a line and an inverted spherical pendulum on a cart moving in the plane

    Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem

    Full text link

    Matching and stabilization of discrete mechanical systems

    Get PDF
    Controlled Lagrangian and matching techniques are developed for the stabilization of equilibria of discrete mechanical systems with symmetry as well as broken symmetry. Interesting new phenomena arise in the controlled Lagrangian approach in the discrete context that are not present in the continuous theory. Specifically, a nonconservative force that is necessary for matching in the discrete setting is introduced. The paper also discusses digital and model predictive controllers

    Physical Dissipation and the Method of Controlled Lagrangians

    Get PDF
    We describe the effect of physical dissipation on stability of equilibria which have been stabilized, in the absence of damping, using the method of controlled Lagrangians. This method applies to a class of underactuated mechanical systems including “balance” systems such as the pendulum on a cart. Since the method involves modifying a system’s kinetic energy metric through feedback, the effect of dissipation is obscured. In particular, it is not generally true that damping makes a feedback-stabilized equilibrium asymptotically stable. Damping in the unactuated directions does tend to enhance stability, however damping in the controlled directions must be “reversed” through feedback. In this paper, we suggest a choice of feedback dissipation to locally exponentially stabilize a class of controlled Lagrangian systems

    Controlled Lagrangians and Potential Shaping for Stabilization of Discrete Mechanical Systems

    Get PDF
    The method of controlled Lagrangians for discrete mechanical systems is extended to include potential shaping in order to achieve complete state-space asymptotic stabilization. New terms in the controlled shape equation that are necessary for matching in the discrete context are introduced. The theory is illustrated with the problem of stabilization of the cart-pendulum system on an incline. We also discuss digital and model predictive control.Comment: IEEE Conference on Decision and Control, 2006 6 pages, 4 figure

    Controlled Lagrangians and Stabilization of the Discrete Cart-Pendulum System

    Get PDF
    Matching techniques are developed for discrete mechanical systems with symmetry. We describe new phenomena that arise in the controlled Lagrangian approach for mechanical systems in the discrete context. In particular, one needs to either make an appropriate selection of momentum levels or introduce a new parameter into the controlled Lagrangian to complete the matching procedure. We also discuss digital and model predictive control
    corecore