3,959 research outputs found

    Neural ShDF: Reviving an Efficient and Consistent Mesh Segmentation Method

    Full text link
    Partitioning a polygonal mesh into meaningful parts can be challenging. Many applications require decomposing such structures for further processing in computer graphics. In the last decade, several methods were proposed to tackle this problem, at the cost of intensive computational times. Recently, machine learning has proven to be effective for the segmentation task on 3D structures. Nevertheless, these state-of-the-art methods are often hardly generalizable and require dividing the learned model into several specific classes of objects to avoid overfitting. We present a data-driven approach leveraging deep learning to encode a mapping function prior to mesh segmentation for multiple applications. Our network reproduces a neighborhood map using our knowledge of the \textsl{Shape Diameter Function} (SDF) method using similarities among vertex neighborhoods. Our approach is resolution-agnostic as we downsample the input meshes and query the full-resolution structure solely for neighborhood contributions. Using our predicted SDF values, we can inject the resulting structure into a graph-cut algorithm to generate an efficient and robust mesh segmentation while considerably reducing the required computation times.Comment: 9 pages, 13 figures, and 3 tables. Short paper and poster published and presented at SIGGRAPH 202

    Learning Controllable 3D Diffusion Models from Single-view Images

    Full text link
    Diffusion models have recently become the de-facto approach for generative modeling in the 2D domain. However, extending diffusion models to 3D is challenging due to the difficulties in acquiring 3D ground truth data for training. On the other hand, 3D GANs that integrate implicit 3D representations into GANs have shown remarkable 3D-aware generation when trained only on single-view image datasets. However, 3D GANs do not provide straightforward ways to precisely control image synthesis. To address these challenges, We present Control3Diff, a 3D diffusion model that combines the strengths of diffusion models and 3D GANs for versatile, controllable 3D-aware image synthesis for single-view datasets. Control3Diff explicitly models the underlying latent distribution (optionally conditioned on external inputs), thus enabling direct control during the diffusion process. Moreover, our approach is general and applicable to any type of controlling input, allowing us to train it with the same diffusion objective without any auxiliary supervision. We validate the efficacy of Control3Diff on standard image generation benchmarks, including FFHQ, AFHQ, and ShapeNet, using various conditioning inputs such as images, sketches, and text prompts. Please see the project website (\url{https://jiataogu.me/control3diff}) for video comparisons.Comment: work in progres

    Adversarial Curriculum Graph Contrastive Learning with Pair-wise Augmentation

    Full text link
    Graph contrastive learning (GCL) has emerged as a pivotal technique in the domain of graph representation learning. A crucial aspect of effective GCL is the caliber of generated positive and negative samples, which is intrinsically dictated by their resemblance to the original data. Nevertheless, precise control over similarity during sample generation presents a formidable challenge, often impeding the effective discovery of representative graph patterns. To address this challenge, we propose an innovative framework: Adversarial Curriculum Graph Contrastive Learning (ACGCL), which capitalizes on the merits of pair-wise augmentation to engender graph-level positive and negative samples with controllable similarity, alongside subgraph contrastive learning to discern effective graph patterns therein. Within the ACGCL framework, we have devised a novel adversarial curriculum training methodology that facilitates progressive learning by sequentially increasing the difficulty of distinguishing the generated samples. Notably, this approach transcends the prevalent sparsity issue inherent in conventional curriculum learning strategies by adaptively concentrating on more challenging training data. Finally, a comprehensive assessment of ACGCL is conducted through extensive experiments on six well-known benchmark datasets, wherein ACGCL conspicuously surpasses a set of state-of-the-art baselines

    Drawing Clustered Graphs as Topographic Maps

    Get PDF
    The visualization of clustered graphs is an essential tool for the analysis of networks, in particular, social networks, in which clustering techniques like community detection can reveal various structural properties. In this paper, we show how clustered graphs can be drawn as topographic maps, a type of map easily understandable by users not familiar with information visu- alization. Elevation levels of connected entities correspond to the nested structure of the cluster hierarchy. We present methods for initial node placement and describe a tree mapping based algorithm that produces an area efficient layout. Given this layout, a triangular ir- regular mesh is generated that is used to extract the elevation data for rendering the map. In addition, the mesh enables the routing of edges based on the topo- graphic features of the map

    Late-Constraint Diffusion Guidance for Controllable Image Synthesis

    Full text link
    Diffusion models, either with or without text condition, have demonstrated impressive capability in synthesizing photorealistic images given a few or even no words. These models may not fully satisfy user need, as normal users or artists intend to control the synthesized images with specific guidance, like overall layout, color, structure, object shape, and so on. To adapt diffusion models for controllable image synthesis, several methods have been proposed to incorporate the required conditions as regularization upon the intermediate features of the diffusion denoising network. These methods, known as early-constraint ones in this paper, have difficulties in handling multiple conditions with a single solution. They intend to train separate models for each specific condition, which require much training cost and result in non-generalizable solutions. To address these difficulties, we propose a new approach namely late-constraint: we leave the diffusion networks unchanged, but constrain its output to be aligned with the required conditions. Specifically, we train a lightweight condition adapter to establish the correlation between external conditions and internal representations of diffusion models. During the iterative denoising process, the conditional guidance is sent into corresponding condition adapter to manipulate the sampling process with the established correlation. We further equip the introduced late-constraint strategy with a timestep resampling method and an early stopping technique, which boost the quality of synthesized image meanwhile complying with the guidance. Our method outperforms the existing early-constraint methods and generalizes better to unseen condition
    corecore