25 research outputs found

    GPT4Rec: A Generative Framework for Personalized Recommendation and User Interests Interpretation

    Full text link
    Recent advancements in Natural Language Processing (NLP) have led to the development of NLP-based recommender systems that have shown superior performance. However, current models commonly treat items as mere IDs and adopt discriminative modeling, resulting in limitations of (1) fully leveraging the content information of items and the language modeling capabilities of NLP models; (2) interpreting user interests to improve relevance and diversity; and (3) adapting practical circumstances such as growing item inventories. To address these limitations, we present GPT4Rec, a novel and flexible generative framework inspired by search engines. It first generates hypothetical "search queries" given item titles in a user's history, and then retrieves items for recommendation by searching these queries. The framework overcomes previous limitations by learning both user and item embeddings in the language space. To well-capture user interests with different aspects and granularity for improving relevance and diversity, we propose a multi-query generation technique with beam search. The generated queries naturally serve as interpretable representations of user interests and can be searched to recommend cold-start items. With GPT-2 language model and BM25 search engine, our framework outperforms state-of-the-art methods by 75.7%75.7\% and 22.2%22.2\% in Recall@K on two public datasets. Experiments further revealed that multi-query generation with beam search improves both the diversity of retrieved items and the coverage of a user's multi-interests. The adaptiveness and interpretability of generated queries are discussed with qualitative case studies

    Latent User Intent Modeling for Sequential Recommenders

    Full text link
    Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.Comment: The Web Conference 2023, Industry Trac

    Multi-granularity Item-based Contrastive Recommendation

    Full text link
    Contrastive learning (CL) has shown its power in recommendation. However, most CL-based recommendation models build their CL tasks merely focusing on the user's aspects, ignoring the rich diverse information in items. In this work, we propose a novel Multi-granularity item-based contrastive learning (MicRec) framework for the matching stage (i.e., candidate generation) in recommendation, which systematically introduces multi-aspect item-related information to representation learning with CL. Specifically, we build three item-based CL tasks as a set of plug-and-play auxiliary objectives to capture item correlations in feature, semantic and session levels. The feature-level item CL aims to learn the fine-grained feature-level item correlations via items and their augmentations. The semantic-level item CL focuses on the coarse-grained semantic correlations between semantically related items. The session-level item CL highlights the global behavioral correlations of items from users' sequential behaviors in all sessions. In experiments, we conduct both offline and online evaluations on real-world datasets, verifying the effectiveness and universality of three proposed CL tasks. Currently, MicRec has been deployed on a real-world recommender system, affecting millions of users. The source code will be released in the future.Comment: 17 pages, under revie

    Trinity: Syncretizing Multi-/Long-tail/Long-term Interests All in One

    Full text link
    Interest modeling in recommender system has been a constant topic for improving user experience, and typical interest modeling tasks (e.g. multi-interest, long-tail interest and long-term interest) have been investigated in many existing works. However, most of them only consider one interest in isolation, while neglecting their interrelationships. In this paper, we argue that these tasks suffer from a common "interest amnesia" problem, and a solution exists to mitigate it simultaneously. We figure that long-term cues can be the cornerstone since they reveal multi-interest and clarify long-tail interest. Inspired by the observation, we propose a novel and unified framework in the retrieval stage, "Trinity", to solve interest amnesia problem and improve multiple interest modeling tasks. We construct a real-time clustering system that enables us to project items into enumerable clusters, and calculate statistical interest histograms over these clusters. Based on these histograms, Trinity recognizes underdelivered themes and remains stable when facing emerging hot topics. Trinity is more appropriate for large-scale industry scenarios because of its modest computational overheads. Its derived retrievers have been deployed on the recommender system of Douyin, significantly improving user experience and retention. We believe that such practical experience can be well generalized to other scenarios

    CROLoss: Towards a Customizable Loss for Retrieval Models in Recommender Systems

    Full text link
    In large-scale recommender systems, retrieving top N relevant candidates accurately with resource constrain is crucial. To evaluate the performance of such retrieval models, Recall@N, the frequency of positive samples being retrieved in the top N ranking, is widely used. However, most of the conventional loss functions for retrieval models such as softmax cross-entropy and pairwise comparison methods do not directly optimize Recall@N. Moreover, those conventional loss functions cannot be customized for the specific retrieval size N required by each application and thus may lead to sub-optimal performance. In this paper, we proposed the Customizable Recall@N Optimization Loss (CROLoss), a loss function that can directly optimize the Recall@N metrics and is customizable for different choices of N. This proposed CROLoss formulation defines a more generalized loss function space, covering most of the conventional loss functions as special cases. Furthermore, we develop the Lambda method, a gradient-based method that invites more flexibility and can further boost the system performance. We evaluate the proposed CROLoss on two public benchmark datasets. The results show that CROLoss achieves SOTA results over conventional loss functions for both datasets with various choices of retrieval size N. CROLoss has been deployed onto our online E-commerce advertising platform, where a fourteen-day online A/B test demonstrated that CROLoss contributes to a significant business revenue growth of 4.75%.Comment: 9 pages, 5 figures. Accepted by by CIKM 202

    DiffuRec: A Diffusion Model for Sequential Recommendation

    Full text link
    Mainstream solutions to Sequential Recommendation (SR) represent items with fixed vectors. These vectors have limited capability in capturing items' latent aspects and users' diverse preferences. As a new generative paradigm, Diffusion models have achieved excellent performance in areas like computer vision and natural language processing. To our understanding, its unique merit in representation generation well fits the problem setting of sequential recommendation. In this paper, we make the very first attempt to adapt Diffusion model to SR and propose DiffuRec, for item representation construction and uncertainty injection. Rather than modeling item representations as fixed vectors, we represent them as distributions in DiffuRec, which reflect user's multiple interests and item's various aspects adaptively. In diffusion phase, DiffuRec corrupts the target item embedding into a Gaussian distribution via noise adding, which is further applied for sequential item distribution representation generation and uncertainty injection. Afterwards, the item representation is fed into an Approximator for target item representation reconstruction. In reversion phase, based on user's historical interaction behaviors, we reverse a Gaussian noise into the target item representation, then apply rounding operation for target item prediction. Experiments over four datasets show that DiffuRec outperforms strong baselines by a large margin

    Attribute Simulation for Item Embedding Enhancement in Multi-interest Recommendation

    Full text link
    Although multi-interest recommenders have achieved significant progress in the matching stage, our research reveals that existing models tend to exhibit an under-clustered item embedding space, which leads to a low discernibility between items and hampers item retrieval. This highlights the necessity for item embedding enhancement. However, item attributes, which serve as effective and straightforward side information for enhancement, are either unavailable or incomplete in many public datasets due to the labor-intensive nature of manual annotation tasks. This dilemma raises two meaningful questions: 1. Can we bypass manual annotation and directly simulate complete attribute information from the interaction data? And 2. If feasible, how to simulate attributes with high accuracy and low complexity in the matching stage? In this paper, we first establish an inspiring theoretical feasibility that the item-attribute correlation matrix can be approximated through elementary transformations on the item co-occurrence matrix. Then based on formula derivation, we propose a simple yet effective module, SimEmb (Item Embedding Enhancement via Simulated Attribute), in the multi-interest recommendation of the matching stage to implement our findings. By simulating attributes with the co-occurrence matrix, SimEmb discards the item ID-based embedding and employs the attribute-weighted summation for item embedding enhancement. Comprehensive experiments on four benchmark datasets demonstrate that our approach notably enhances the clustering of item embedding and significantly outperforms SOTA models with an average improvement of 25.59% on [email protected]: This paper has been accepted by the 17th ACM International Conference on Web Search and Data Mining (WSDM 2024). The camera-ready version will be available in the conference proceeding

    FairSync: Ensuring Amortized Group Exposure in Distributed Recommendation Retrieval

    Full text link
    In pursuit of fairness and balanced development, recommender systems (RS) often prioritize group fairness, ensuring that specific groups maintain a minimum level of exposure over a given period. For example, RS platforms aim to ensure adequate exposure for new providers or specific categories of items according to their needs. Modern industry RS usually adopts a two-stage pipeline: stage-1 (retrieval stage) retrieves hundreds of candidates from millions of items distributed across various servers, and stage-2 (ranking stage) focuses on presenting a small-size but accurate selection from items chosen in stage-1. Existing efforts for ensuring amortized group exposures focus on stage-2, however, stage-1 is also critical for the task. Without a high-quality set of candidates, the stage-2 ranker cannot ensure the required exposure of groups. Previous fairness-aware works designed for stage-2 typically require accessing and traversing all items. In stage-1, however, millions of items are distributively stored in servers, making it infeasible to traverse all of them. How to ensure group exposures in the distributed retrieval process is a challenging question. To address this issue, we introduce a model named FairSync, which transforms the problem into a constrained distributed optimization problem. Specifically, FairSync resolves the issue by moving it to the dual space, where a central node aggregates historical fairness data into a vector and distributes it to all servers. To trade off the efficiency and accuracy, the gradient descent technique is used to periodically update the parameter of the dual vector. The experiment results on two public recommender retrieval datasets showcased that FairSync outperformed all the baselines, achieving the desired minimum level of exposures while maintaining a high level of retrieval accuracy.Comment: Accepted in WWW'2

    Understanding and Modeling Passive-Negative Feedback for Short-video Sequential Recommendation

    Full text link
    Sequential recommendation is one of the most important tasks in recommender systems, which aims to recommend the next interacted item with historical behaviors as input. Traditional sequential recommendation always mainly considers the collected positive feedback such as click, purchase, etc. However, in short-video platforms such as TikTok, video viewing behavior may not always represent positive feedback. Specifically, the videos are played automatically, and users passively receive the recommended videos. In this new scenario, users passively express negative feedback by skipping over videos they do not like, which provides valuable information about their preferences. Different from the negative feedback studied in traditional recommender systems, this passive-negative feedback can reflect users' interests and serve as an important supervision signal in extracting users' preferences. Therefore, it is essential to carefully design and utilize it in this novel recommendation scenario. In this work, we first conduct analyses based on a large-scale real-world short-video behavior dataset and illustrate the significance of leveraging passive feedback. We then propose a novel method that deploys the sub-interest encoder, which incorporates positive feedback and passive-negative feedback as supervision signals to learn the user's current active sub-interest. Moreover, we introduce an adaptive fusion layer to integrate various sub-interests effectively. To enhance the robustness of our model, we then introduce a multi-task learning module to simultaneously optimize two kinds of feedback -- passive-negative feedback and traditional randomly-sampled negative feedback. The experiments on two large-scale datasets verify that the proposed method can significantly outperform state-of-the-art approaches. The code is released at https://github.com/tsinghua-fib-lab/RecSys2023-SINE.Comment: Accepted by RecSys'2
    corecore