2 research outputs found

    Controllability of Heterogeneous Multi-Agent Networks

    Full text link
    The existing results on controllability of multi-agents networks are mostly based on homogeneous nodes. This paper focuses on controllability of heterogeneous multi-agent networks, where the agents are modeled as two types. One type is that the agents are of the same high-order dynamics, and the interconnection topologies of the information flow in different orders are supposed to be different. It is proved that a heterogeneous-topology network is controllable if and only if the first-order information topology is leader-follower connected, and there exists a Laplacian matrix, which is a linear combination of the Laplacian matrices of each order information, whose corresponding topology is controllable. The other type is that the agents are of generic linear dynamics, and the dynamics are supposed to be heterogeneous. A necessary and sufficient condition for controllability of heterogeneous-dynamic networks is that each agent contains a controllable dynamic part, and the interconnection topology of the network is leader-follower connected. If some dynamics of the agents are not controllable, the controllability between the agents and the whole network is also studied by introducing the concept of eigenvector-uncontrollable. Different illustrative examples are provided to demonstrate the effectiveness of the theoretical results in this paper

    Energy cost for target control of complex networks

    Full text link
    To promote the implementation of realistic control over various complex networks, recent work has been focusing on analyzing energy cost. Indeed, the energy cost quantifies how much effort is required to drive the system from one state to another when it is fully controllable. A fully controllable system means that the system can be driven by external inputs from any initial state to any final state in finite time. However, it is prohibitively expensive and unnecessary to confine that the system is fully controllable when we merely need to accomplish the so-called target control---controlling a subnet of nodes chosen from the entire network. Yet, when the system is partially controllable, the associated energy cost remains elusive. Here we present the minimum energy cost for controlling an arbitrary subset of nodes of a network. Moreover, we systematically show the scaling behavior of the precise upper and lower bounds of the minimum energy in term of the time given to accomplish control. For controlling a given number of target nodes, we further demonstrate that the associated energy over different configurations can differ by several orders of magnitude. When the adjacency matrix of the network is nonsingular, we can simplify the framework by just considering the induced subgraph spanned by target nodes instead of the entire network. Importantly, we find that, energy cost could be saved by orders of magnitude as we only need the partial controllability of the entire network. Our theoretical results are all corroborated by numerical calculations, and pave the way for estimating the energy cost to implement realistic target control in various applications
    corecore