18 research outputs found

    Controllability Gramian spectra of random networks

    Get PDF
    We propose a theoretical framework to study the eigenvalue spectra of the controllability Gramian of systems with random state matrices, such as networked systems with a random graph structure. Using random matrix theory, we provide expressions for the moments of the eigenvalue distribution of the controllability Gramian. These moments can then be used to derive useful properties of the eigenvalue distribution of the Gramian (in some cases, even closed-form expressions for the distribution). We illustrate this framework by considering system matrices derived from common random graph and matrix ensembles, such as the Wigner ensemble, the Gaussian Orthogonal Ensemble (GOE), and random regular graphs. Subsequently, we illustrate how the eigenvalue distribution of the Gramian can be used to draw conclusions about the energy required to control random system

    Strong Structural Controllability of Systems on Colored Graphs

    Get PDF
    This paper deals with structural controllability of leader-follower networks. The system matrix defining the network dynamics is a pattern matrix in which a priori given entries are equal to zero, while the remaining entries take nonzero values. The network is called strongly structurally controllable if for all choices of real values for the nonzero entries in the pattern matrix, the system is controllable in the classical sense. In this paper we introduce a more general notion of strong structural controllability which deals with the situation that given nonzero entries in the system's pattern matrix are constrained to take identical nonzero values. The constraint of identical nonzero entries can be caused by symmetry considerations or physical constraints on the network. The aim of this paper is to establish graph theoretic conditions for this more general property of strong structural controllability.Comment: 13 page
    corecore