4 research outputs found

    Control of magnetotactic bacterium in a micro-fabricated maze

    Get PDF
    We demonstrate the closed-loop control of a magnetotactic bacterium (MTB), i.e., Magnetospirillum magnetotacticum, within a micro-fabricated maze using a magneticbased manipulation system. The effect of the channel wall on the motion of the MTB is experimentally analyzed. This analysis is done by comparing the characteristics of the transient- and steady-states of the controlled MTB inside and outside a microfabricated maze. In this analysis, the magnetic dipole moment of our MTB is characterized using a motile technique (the u-turn technique), then used in the realization of a closed-loop control system. This control system allows the MTB to reach reference positions within a micro-fabricated maze with a channel width of 10 ÎĽm, at a velocity of 8 ÎĽm/s. Further, the control system positions the MTB within a region-of-convergence of 10 ÎĽm in diameter. Due to the effect of the channel wall, we observe that the velocity and the positioning accuracy of the MTB are decreased and increased by 71% and 44%, respectively

    An Investigation of the Sensing Capabilities of Magnetotactic Bacteria

    Get PDF
    We investigate the sensing capabilities of magnetotactic bacteria (Magnetospirillum gryphiswaldense strain MSR1) to MCF-7 breast cancer cells. Cancer cells are allowed to grow inside a capillary tube with depth of 200 μ m and motion of magnetotactic bacteria is investigated under the influence of oxygen gradient and geomagnetic field. The influence of cancer cells is modeled to predict the oxygen gradient within the capillary tube in three-dimensional space. Our experimental motion analysis and count of motile magnetotactic bacteria indicate that they migrate towards less-oxygenated regions within the vicinity of cancer cells. Bands of magnetotactic bacteria with average concentration of 18.8±2.0% are observed in close proximity to MCF-7 cells (h = 20~ μ m), whereas the concentration at proximity of 190~ μ m is 5.0 ± 6.8%

    Particle computation: Designing worlds to control robot swarms with only global signals

    Get PDF
    Micro- and nanorobots are often controlled by global input signals, such as an electromagnetic or gravitational field. These fields move each robot maximally until it hits a stationary obstacle or another stationary robot. This paper investigates 2D motion-planning complexity for large swarms of simple mobile robots (such as bacteria, sensors, or smart building material). In previous work we proved it is NP-hard to decide whether a given initial configuration can be transformed into a desired target configuration; in this paper we prove a stronger result: the problem of finding an optimal control sequence is PSPACE-complete. On the positive side, we show we can build useful systems by designing obstacles. We present a reconfigurable hardware platform and demonstrate how to form arbitrary permutations and build a compact absolute encoder. We then take the same platform and use dual-rail logic to build a universal logic gate that concurrently evaluates AND, NAND, NOR and OR operations. Using many of these gates and appropriate interconnects we can evaluate any logical expression.National Science Foundation (U.S.) (CPS-1035716

    Particle Computation: Complexity, Algorithms, and Logic

    Full text link
    We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal (such as gravity or a magnetic field). We show that a maze of obstacles to the environment can be used to create complex systems. We provide a wide range of results for a wide range of questions. These can be subdivided into external algorithmic problems, in which particle configurations serve as input for computations that are performed elsewhere, and internal logic problems, in which the particle configurations themselves are used for carrying out computations. For external algorithms, we give both negative and positive results. If we are given a set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial configuration of unit-sized particles can be transformed into a desired target configuration. Moreover, we show that finding a control sequence of minimum length is PSPACE-complete. We also work on the inverse problem, providing constructive algorithms to design workspaces that efficiently implement arbitrary permutations between different configurations. For internal logic, we investigate how arbitrary computations can be implemented. We demonstrate how to encode dual-rail logic to build a universal logic gate that concurrently evaluates and, nand, nor, and or operations. Using many of these gates and appropriate interconnects, we can evaluate any logical expression. However, we establish that simulating the full range of complex interactions present in arbitrary digital circuits encounters a fundamental difficulty: a fan-out gate cannot be generated. We resolve this missing component with the help of 2x1 particles, which can create fan-out gates that produce multiple copies of the inputs. Using these gates we provide rules for replicating arbitrary digital circuits.Comment: 27 pages, 19 figures, full version that combines three previous conference article
    corecore