17,497 research outputs found

    Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Get PDF
    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified

    Investigation into high-temperature corrosion in a large-scale municipal waste-to-energy plant

    No full text
    High-temperature corrosion in the superheater of a large-scale waste-to-energy plant was investigated. A comparison of nickel-/iron-based alloys and austenitic stainless steel probes placed in the furnace demonstrated that temperature and particle deposition greatly influence corrosion. Nickel-based alloys performed better than the other metal alloys, though an aluminide coating further increased their corrosion resistance. Sacrificial baffles provided additional room for deposit accumulation, resulting in vigorous deposit-induced corrosion. Computational modelling (FLUENT code) was used to simulate flow characteristics and heat transfer. This study has shown that the use of aluminide coatings is a promising technique for minimising superheater corrosion in such facilities. (C) 2010 Elsevier Ltd. All rights reserved

    A survey of gas-side fouling in industrial heat-transfer equipment

    Get PDF
    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area

    Numerical investigation of conjugated heat transfer in a channel with a moving depositing front

    Get PDF
    This article presents numerical simulations of conjugated heat transfer in a fouled channel with a moving depositing front. The depositing front separating the fluid and the deposit layer is captured using the level-set method. Fluid flow is modeled by the incompressible Navier–Stokes equations. Numerical solution is performed on a fixed mesh using the finite volume method. The effects of Reynolds number and thermal conductivity ratio between the deposit layer and the fluid on local Nusselt number as well as length-averaged Nusselt number are investigated. It is found that heat transfer performance, represented by the local and length-averaged Nusselt number reduces significantly in a fouled channel compared with that in a clean channel. Heat transfer performance decreases with the growth of the deposit layer. Increases in Reynolds, Prandtl numbers both enhance heat transfer. Besides, heat transfer is enhanced when the thermal conductivity ratio between the deposit layer and the fluid is lower than 20 but it decreases when the thermal conductivity ratio is larger than 2

    Understanding the ash deposition formation in Zhundong lignite combustion through dynamic CFD modelling analysis

    Get PDF
    A dynamic CFD model, which is based on the inertia impaction, the thermophoresis and the direct alkali vapour condensation incorporating the influence of the heat transfer to the tube, has been developed for predicting the ash deposition formation in Zhundong lignite combustion in a pilot-scale furnace. The results show that particle deposition from the inertia impaction and the thermophoresis dictates the ash deposition formation under high furnace temperatures. The deposition caused by the direct alkali vapour condensation is less significant. As deposition time increases, particle impaction efficiency decreases and sticking efficiency increases due to the thermophoresis and the local temperature conditions, which result in the time-dependent behaviour of the deposition growth. In addition, the ash deposition characteristics are influenced under different furnace temperatures, due to the change in the particle impaction and sticking behaviours. Qualitative agreement is obtained between the predicted results and the measurements for the heat flux to the tube and the ash deposition growth

    Analysis of thermal resistance evolution of ash deposits during co-firing of coal with biomass and coal mine waste residues

    Get PDF
    Co-firing biomass or waste fuels with coal in conventional thermal plants is a promising way to reduce environmental impact of human activities with an acceptable economic investment. One of the main issues to be addressed is the worsening in ash fouling and the reduction of heat transfer rate. In the present paper, the deposits thermal resistance during direct combustion of different blends of coal and various native fuels is investigated by using a deposition probe, kept at 550 °C in order to emulate the conditions of superheaters of conventional power units. Two energy crops (Cynara cardunculus L. and Populus spp.), a forest residue (Pinus pinaster) and a waste coal (coal mine waste residues) were successfully tested in a semi-industrial scale pilot plant. A thermal model of the probe is presented to estimate heat transfer rate and thermal resistance of ash deposits. After the validation with experimental data, a sensitivity analysis allows to identify the deposit surface emissivity and the flue gas temperature as the most influential parameters. The heat uptake in air flow decreases with time for all the experimental tests in spite of the increase in flue gas and walls temperatures. Except for poplar blends, under similar operation conditions, a rise in the substitution percentage means faster decreasing rates in heat transfer and higher thermal resistance due to the ash deposits, especially for cynara and coal mine waste residues. The present work demonstrates the usefulness of thermal models to estimate the thermal resistance of ash deposits without the need of sophisticated instrumentation. Dedicated thermal models, similar to the developed one, could serve to design smart cleaning sequences to improve efficiency in power generation processes

    Fouling in Heat Exchangers

    Get PDF

    Study on ash deposition under oxyfuel combustion of coal/biomass blends

    Get PDF
    Combustion in an O₂/CO₂mixture (oxyfuel) has been recognized as a promising technology for CO₂capture as it produces a high CO₂concentration flue gas. Furthermore, biofuels in general contribute to CO₂reduction in comparison with fossil fuels as they are considered CO₂neutral. Ash formation and deposition (surface fouling) behavior of coal/biomass blends under O₂/CO₂combustion conditions is still not extensively studied. Aim of this work is the comparative study of ash formation and deposition of selected coal/biomass blends under oxyfuel and air conditions in a lab scale pulverized coal combustor (drop tube). The fuels used were Russian and South African coals and their blends with Shea meal (cocoa). A horizontal deposition probe, equipped with thermocouples and heat transfer sensors for on line data acquisition, was placed at a fixed distance from the burner in order to simulate the ash deposition on heat transfer surfaces (e.g. water or steam tubes). Furthermore, a cascade impactor (staged filter) was used to obtain size distributed ash samples including the submicron range at the reactor exit. The deposition ratio and propensity measured for the various experimental conditions were higher in all oxyfuel cases. The SEM/EDS and ICP analyses of the deposit and cascade impactor ash samples indicate K interactions with the alumina silicates and to a smaller extend with Cl, which was all released in the gas phase, in both the oxyfuel and air combustion samples. Sulfur was depleted in both the air or oxyfuel ash deposits. S and K enrichment was detected in the fine ash stages, slightly increased under air combustion conditions. Chemical equilibrium calculations were carried out to facilitate the interpretation of the measured data; the results indicate that temperature dependence and fuels/blends ash composition are the major factors affecting gaseous compounds and ash composition rather than the combustion environment, which seems to affect the fine ash (submicron) ash composition, and the ash deposition mechanismsThe research work reported in this paper was partly carried out with the financial support from the RFCS contract number RFCRCT- 2006-00010. The very fine work done by Peter Heere in carrying out the experiments is highly acknowledgedPublicad
    corecore